A bit about NICTA

• National Information and Communications Technology Australia (NICTA)
• Research in ICT since 2004
• Major Labs in Sydney, Melbourne, Canberra
• 700 researchers, including 300 PhD students
• Currently government funded
• Areas:
 – Broadband and the Digital Economy
 – Health
 – Infrastructures, Transport and Logistics
 – Safety and Security
Outline

• What is the vehicle routing problem (VRP)?
• ‘Traditional’ (Non-CP) solution methods
• A CP model for the VRP
• Propagation
• Large Neighbourhood Search revisited
What is the Vehicle Routing Problem?

Given a set of customers, and a fleet of vehicles to make deliveries, find a set of routes that services all customers at minimum cost.
Vehicle Routing Problem
Vehicle Routing Problem
Vehicle Routing Problem

VRP is hard

• With a VRP solver I can solve the Travelling Salesman Problem (using 1 vehicle and infinite capacity)
Why study the VRP?

• The logistics task is 9% of economic activity in Australia
• Logistics accounts for 10% of the selling price of goods
Vehicle Routing Problem

For each customer, we know
- Quantity required
- The cost to travel to every other customer

For the vehicle fleet, we know
- The number of vehicles
- The capacity

We must determine which customers each vehicle serves, and in what order, to minimise cost
Vehicle Routing Problem

Objective function

In academic studies, usually a combination:
- First, minimise number of routes
- Then minimise total distance or total time

In real world
- A combination of time and distance
- Must include vehicle- and staff-dependent costs
- Usually vehicle numbers are fixed
Routing with constraints

• Each new twist (business rule, practice, limitation) changes which solutions are good, and which are even acceptable

• The types of constraints that must be observed may impact on the way the problem is solved

• Many types of constraint studied – but usually in isolation

• We will look at a few that have been studied in the literature
Time window constraints

Vehicle routing with Constraints

- Time Window constraints
 - A window during which service can start
 - E.g. only accept delivery 7:30am to 11:00am

- Additional input data required
 - Duration of each customer visit
 - Time between each pair of customers

- (Travel time can be vehicle-dependent or time-dependent)
 - Makes the route harder to visualise
Time Window constraints
Pickup and Delivery problems

- Most routing considers delivery to/from a depot (depots)
- Pickup and Delivery problems consider FedEx style problem:

\[\text{pickup at location A, deliver to location B} \]
Other variants

Profitable tour problem
- Not all visits need to be completed
- Known profit for each visit
- Choose a subset that gives maximum return (profit from visits – routing cost)
VRP meets the real world

Many groups now looking at real-world constraints

Rich Vehicle Routing Problem

- Attempt to model constraints common to many real-life enterprises
 - Multiple Time windows
 - Multiple Commodities
 - Heterogeneous vehicles
 - Compatibility constraints
 - Goods for customer A can’t travel with goods from customer B
 - Goods for customer A can’t travel on vehicle C
VRP meets the real world

Other real-world considerations

- Fatigue rules and driver breaks
- Vehicle re-use
- Ability to change vehicle characteristics (composition)
 - Add trailer, or move compartment divider
- Use of limited resources
 - e.g. limited docks for loading, hence need to stagger dispatch times
- Variable loading / unloading times
Solution Methods
Solving VRPs

VRP is hard

- *NP Hard* in the strong sense
- Exact solutions only for small problems (20-50 customers)
- Most solution methods are heuristic
ILP

\[
\text{minimise: } \sum_{i,j} c_{ij} \sum_k x_{ijk}
\]

subject to

\[
\sum_{i} \sum_k x_{ijk} = 1 \quad \forall j
\]

\[
\sum_{j} \sum_k x_{ijk} = 1 \quad \forall i
\]

\[
\sum_{j} \sum_k x_{ihk} - \sum_{j} \sum_k x_{hjk} = 0 \quad \forall k, h
\]

\[
\sum_i q_i \sum_j x_{ijk} \leq Q_k \quad \forall k
\]

\[
\{x_{ijk}\} \subseteq S
\]

\[
x_{ijk} \in \{0,1\}
\]

Advantages
- Can find optimal solution

Disadvantages
- Only works for small problems
- One extra constraint \(\rightarrow\) back to the drawing board
ILP – Column Generation

<table>
<thead>
<tr>
<th></th>
<th>89</th>
<th>76</th>
<th>99</th>
<th>45</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- **Columns** represent routes
- **Column/route cost** c_k
- **Rows** represent customers
- **Array entry** $a_{ik} = 1$ iff customer i is covered by route k
Column Generation

- Decision var x_k: Use column k?
- Column only appears if feasible ordering is possible
- Cost of best ordering is c_k
- Best order stored separately
- Master problem at right

\[
\min \sum c_k x_k \\
\text{subject to} \quad \sum_{k} a_{ik} = 1 \quad \forall i \\
x_k \in \{0,1\}
\]
Column Generation

Subproblem

\[
\min \sum_{i,j} x_{ij} (c_{ij} + \lambda_j)
\]

s.t. \[\sum_j x_{ij} = 1 \quad \forall i\]

\[\sum_i x_{ij} = 1 \quad \forall j\]

Route constraints

- i.e. shortest path with side constraints
- If min is –ve add to master problem
- CP!
Heuristic Methods

• Most operate as
 – Construct
 – Improve (Local Search)
Heuristic methods -
Construction

Insert methods

Insert1.dig

Order is important:

Insert2.dig

Compare.dig
Heuristic methods -

Construction

Savings method (Clarke & Wright 1964)

- Calculate S_{ij} for all i, j
- Consider cheapest S_{ij}
- If j can be appended to i
 - merge them to new i
 - update all S_{ij}
- else
 - delete S_{ij}
- Repeat
Improvement Methods

2-opt (3-opt, 4-opt…)
- Remove 2 arcs
- Replace with 2 others
Improvement methods

Large Neighbourhood Search
= Destroy & Re-create

• Destroy part of the solution
 – Remove visits from the solution

• Re-create solution
 – Use favourite construct method to re-insert customers

• If the solution is better, keep it

• Repeat
Improvement methods

Variable Neighbourhood Search

- Consider multiple neighbourhoods
 - 1-move (move 1 visit to another position)
 - 1-1 swap (swap visits in 2 routes)
 - 2-2 swap (swap 2 visits between 2 routes)
 - 2-opt
 - 3-opt
 - Or-opt size 2 (move chain of length 2 anywhere)
 - Or-opt size 3 (chain length 3)
 - Tail exchange (swap final portion of routes)
Improvement methods

Variable Neighbourhood Search

- Consider multiple neighbourhoods
- Find local minimum in smallest neighbourhood
- Advance to next-largest neighbourhood
- Search current neighbourhood
 - If a change is found, return to smallest neighbourhood
 - Otherwise, advance to next-largest
Genetic Programming

- Generate a population of solutions (construct methods)
- Evaluate fitness (objective)
- Create next generation:
 - Choose two solutions from population
 - Combine the two (two ways)
 - (Mutate)
 - Produce offspring (calculate fitness)
 - (Improve)
 - Repeat until population doubles
- Apply selection:
 - Bottom half “dies”
- Repeat
Solution Methods

.. and the whole bag of tricks

- Tabu Search
- Simulated Annealing
- Ants
- Bees
-
Solution Methods

What’s wrong with that?

• New constraint \rightarrow new code
 – Often right in the core

• New constraints interact
 – e.g. Multiple time windows mess up duration calculation

• Code is hard to understand, hard to maintain
Solution Methods

An alternative: Constraint Programming

Advantages:
• Expressive language for formulating constraints
• Each constraint encapsulated
• Constraints interact naturally

Disadvantages:
• Difficulty in representation
• Can be slower
Two ways to use constraint programming

- Rule Checker
- Properly

Rule Checker:
- Use favourite method to create/improve a solution
- Check it with CP
 - Very inefficient.
A CP Model for the VRP
A Model for a (Rich) VRP

Locations

• Fixed locations
 – where things happen
 – one for each customer + one for (each?) depot

Metrics

• Know time $T_{i,j}$ between each location pair i, j
• Know cost $C_{i,j}$ between each location pair i, j
 – Both obey triangle inequality
 – (Not always true in practice)

Commodities

• c commodities (e.g. weight, volume, pallets)
A Model for a (Rich) VRP

Customers

- n customers (fixed in this model)
 - Known demand $D_{i,k}$ of commodity k for customer i
 - Known “value” V_i of customer i – penalty for not servicing
 - Know Time Windows E_i, L_i, earliest and latest start times
 - Know Service time S_i
A Model for a (Rich) VRP

Vehicles

- m vehicles / routes (fixed in this model)
 - Assume 1 route per vehicle

- Known Capacity $Q_{j,k}$ for commodity k on vehicle j

- Known start location
- Know start time
- Known end location
- Know latest return time
Vocabulary

• A solution is made up of routes (one for each vehicle)
• A route is made up of a sequence of visits
• Some visits serve a customer (customer visit)

(Some tricks)
• Each route has a “start visit” and an “end visit”
• Start visit is first visit on a route – location is depot
• End visit is last visit on a route – location is depot
• Also have an additional route – the unassigned route
 – Where visits live that cannot be assigned
Referencing

Customers
- Each customer has an index in $N = \{1..n\}$
- Customers are ‘named’ in CP by their index

Routes
- Each route has an index in $M = \{1..m\}$
- Unassigned route has index 0
- Routes are ‘named’ in CP by their index

Visits
- Customer visit index same as customer index
- Start visit for route k has index $n + k$; aka start_k
- End visit for route k has index $n + m + k$; aka end_k
Vocabulary
Sets

- $N = \{1 \ldots n\}$ – customers
- $M = \{1 \ldots m\}$ – routes
- $R = M \cup \{0\}$ – includes ‘unassigned’ route
- $S = \{n+1 \ldots n+m\}$ – start visits
- $E = \{n+m+1 \ldots n+2m\}$ – end visits
- $V = N \cup S \cup E$ – all visits
- $V^S = N \cup S$ – visits that have a sensible successor
- $V^E = N \cup E$ – visits that have a sensible predecessor
Data

We know (note uppercase)

- V_i The ‘value’ of customer i
- D_{ik} Demand by customer i for commodity k
- E_i Earliest time to start service at i
- L_i Latest time to start service at i
- S_i Service time of visit at i
- Q_{jk} Capacity of vehicle j for commodity k
- T_{ij} Travel time from visit i to visit j
- C_{ij} Cost (w.r.t. objective) of travel from i to j
Decision Variables

Successor variables: \(s_i \)
- \(s_i \) gives direct successor of \(i \), i.e. the index of the next visit on the route that visits \(i \)
- \(s_i \in V^E \) for \(i \) in \(V^S \) \(s_i = 0 \) for \(i \) in \(E \)

Predecessor variables \(p_i \)
- \(p_i \) gives the index of the previous visit in the route
- \(p_i \in V^S \) for \(i \) in \(V^E \) \(p_i = 0 \) for \(i \) in \(S \)
- Redundant – but empirical evidence for its use

Route variables \(r_i \)
- \(r_i \) gives the index of the route (vehicle) that visits \(i \)
- \(r_i \in R \)
Example

<table>
<thead>
<tr>
<th>i</th>
<th>s_i</th>
<th>p_i</th>
<th>r_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Route 1

Route 2
Other variables

Accumulation Variables

- q_{ik} Quantity of commodity k after visit i
- c_i Objective cost getting to i

For problems with time constraints

- a_i Arrival time at i
- t_i Start time at i (time service starts)
- d_i Departure time at i

- Actually, only t_i is required, but others allow for expressive constraints
Objective

Objective is

• Minimize
 – sum of objective \((C_{ij})\) over used arcs, plus
 – value of unassigned visits

• Minimize

\[
\sum_{i \in V^S, r_i \neq 0} C_{i,s_i} + \sum_{i \in N | r_i = 0} V_i
\]
Basic constraints

Path \((S, E, \{ s_i \mid i \in V \}) \)

AllDifferentExceptZero \((\{ p_i \mid i \in V^E \}) \)

Accumulate obj.
\[
c_{s_i} = c_i + C_{i,s_i} \quad \forall i \in V^S
\]

Accumulate time
\[
a_{s_i} = d_i + T_{i,s_i} \quad \forall i \in V^S
\]

Time windows
\[
t_i \geq a_i \quad \forall i \in V
\]
\[
t_i \leq L_i \quad \forall i \in V
\]
\[
t_i \geq E_i \quad \forall i \in V
\]
<table>
<thead>
<tr>
<th>Constraints</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load</td>
<td>$q_{sik} = q_{ik} + Q_{sik}$ $\forall i \in V^S, k \in C$</td>
</tr>
<tr>
<td></td>
<td>$q_{ik} \leq Q_{r_{ik}}$ $\forall i \in V, k \in C$</td>
</tr>
<tr>
<td></td>
<td>$q_{ik} \geq 0$ $\forall i \in V, k \in C$</td>
</tr>
<tr>
<td></td>
<td>$q_{ik} = 0$ $\forall i \in S, k \in C$</td>
</tr>
<tr>
<td>Consistency</td>
<td>$c_i = 0$ $\forall i \in S$</td>
</tr>
<tr>
<td></td>
<td>$s_{pi} = i$ $\forall i \in V^S$</td>
</tr>
<tr>
<td></td>
<td>$p_{si} = i$ $\forall i \in V^E$</td>
</tr>
<tr>
<td></td>
<td>$r_i = r_{si}$ $\forall i \in V^S$</td>
</tr>
<tr>
<td></td>
<td>$r_{n+k} = k$ $\forall k \in M$</td>
</tr>
<tr>
<td></td>
<td>$r_{n+m+k} = k$ $\forall k \in M$</td>
</tr>
</tbody>
</table>
What can we model?

- Basic VRP
- VRP with time windows (VRPTW)
- Multi-depot
- Heterogeneous fleet
- Orienteering / Profitable tour problems
- Open VRP (vehicle not required to return to base)
 - Requires *anywhere* location
 - Route end visits located at *anywhere*
 - Distance $i \rightarrow anywhere = 0$
- Compatibility
 - Customers on different / same vehicle
 - Customers on/not on given vehicle
- Pickup and Delivery problems
What can we model?

- Variable load/unload times
 - by constraining departure time relative to start time
- Dispatch time constraints
 - e.g. limited docks
 - e_i for i in S is load-start time
- Depot close time
 - Time window on end visits
- Fleet size and mix
 - Add lots of vehicles
 - Need to introduce a ‘fixed cost’ for a vehicle
 - C_{ij} is increased by fixed cost for all $i \in S$, all $j \in N$
What can’t we model

• Can’t handle dynamic problems
 – Fixed domain for \(s, p, r \) vars

• Can’t introduce new visits post-hoc
 – E.g. optional driver break must be allowed at start

• Can’t decide how many visits to same customer
 – ‘Larger than truck-load’ problems
 – If qty is fixed, can have multiple visits / cust
 – Heterogeneous fleet is a pain

• Can’t handle time- or vehicle-dependent travel times/costs

• Soft Constraints
Solving the CP
Solving

Pure CP

- Assign to ‘successor’ variables
- Form chains of visits
- Decision 1: Which visit to insert
- Decision 2: Where to insert it

- ‘Rooted chain’ starts at Start
- ‘Free chain’ otherwise
- Can reason about free chains but rooted chains easier
Propagation – Cycles

Subtour elimination

• Rooted chains are fine
• For free chains:
 – “last \(j\)” is last visit in chain starting at \(j\)
 – for any chain starting at \(j\),
 • remove \(j\) from \(S_{\text{last}}(j)\)

• Some CP libraries have built-ins
 – Comet: ‘circuit’
 – ILOG: Path constraint
Propagation – Cycles

‘Path’ constraint

• Propagates subtour elimination
• Also propagates cost

• path \((S, E, succ, P, z)\)
 – \(succ\) array implies path
 – ensures path from nodes in \(S\) to nodes in \(E\) through nodes in \(P\)
 – variable \(z\) bounds cost of path
 – cost propagated incrementally based on shortest / longest paths
Propagation – Cost

‘Path’ constraint
Maintains sets

- Path is consistent if it starts in S, ends in T, goes through P, and has bounds consistent with z
- $Pos \subseteq P \cup S \cup T$: Possibly in the path
 - If no consistent paths use i, then $i \notin Pos$
- $Req \subseteq Pos$: Required to be in the path
 - If there is a consistent path that does not need i, then $i \notin Req$
- Shortest path in $Req \rightarrow$ lower bound on z
- Longest path in $Pos \rightarrow$ upper bound on z
 == Shortest path with –ve costs
- Updated incrementally (and efficiently)
Simulated Annealing

shortcut

- leverages cost estimate from Path constraint

- std SA:
 - Generate sol
 - test delta obj against uniform rand var

- improved SA
 - generate random var first
 - calc acceptable obj
 - constrain obj

- Much more efficient

\[P(\text{accept}) = e^{\frac{-\partial}{T}} \]

\[\partial < T \log(x) \]

\[z < z^* + \partial \]
Propagation – Capacity

Rooted Chain

- For each visit \(i \) with \(p_i \) not bound
 - For each route \(k \) in domain of \(r_i \)
 - If spare space on route \(k \) won’t allow visit \(i \)
 - Remove \(k \) from \(r_i \)
 - Remove \(i \) from \(p_{\text{end}}(k) \)
 - Remove \(i \) from \(S_{\text{last}}(\text{start}(k)) \)

Free chains

- As above (pretty much)
- Before increasing chain to load \(L \)
 - \(v = \) Count routes with free space \(\geq L \)
 - \(c = \) Count free chains with load \(\geq L \)
 - if \(c > v \), can’t form chain
Propagation – Time

Time Constraints:

Rooted chains:
• For each route k
 – For each visit i in domain of $S_{last}(k)$
 • If vehicle can’t reach i before E_i
 – Remove k from r_i
 – Remove i from $S_{last}(start(k))$

Free chains:
• Form “implied time window” from chain
• Rest is as above
Savings

Note:

- Clarke-Wright “Savings” method grows chains of visits
- Very successful early method
- Still used in many methods for an initial solution
- Very appropriate for CP
A gotchya: Chronological backtracking

Assign a successor
A gotchya: Chronological backtracking

Assign a successor
Can’t re-assign
• Domains can only shrink
Assign a successor

s₁ = [2,3,4,5,8,9]
s₂ = [1,3,4,5]
s₃ = [1,2,4,5,8,9]
s₄ = [1,3,5,9]
s₅ = [1,2,3,4,8,9]
s₆ = [1,3,5,8]
s₇ = [1,2,3,5]
s₈ = [0]
s₉ = [0]
Assign a successor

\[s_1 = [3,4,5] \]
\[s_2 = [1,3,5] \]
\[s_3 = [1,2,4,5,8,9] \]
\[s_4 = [3,5,9] \]
\[s_5 = [1,2,3,4,8,9] \]
\[s_6 = [3,5,8] \]
\[s_7 = [2,3,5] \]
\[s_8 = [0] \]
\[s_9 = [0] \]
A gotchya: Chronological backtracking

Assume: $T_{i,j} = 1$ for all i, j

TWs for 1-5 are [1-3]

$a_1 = [1,2,3]$
$a_2 = [1,2]$
$a_3 = [1,2,3]$
$a_4 = [2,3]$
$a_5 = [1,2,3]$
$a_6 = [0]$
$a_7 = [0]$
$a_8 = [0,1,2,3,4]$
$a_9 = [3,4]$
A gotchya: Chronological backtracking

Assume: $T_{i,j} = 1$ for all i, j

TWs for 1-5 are are [1-3]

$a_1 = [2]$
$a_2 = [1]$
$a_3 = [1,2,3]$
$a_4 = [3]$
$a_5 = [1,2,3]$
$a_6 = [0]$
$a_7 = [0]$
$a_8 = [0,1,2,3,4]$
$a_9 = [4]$
Propagation – an alternative

- Alternative relies on knowledge of “incumbent” solution
- Use shared data structure
- Can use full insertion (insert into middle of ‘chain’)

Diagram:

- CP System
 - Var/value choice
 - Propagators
- Incumbent Solution
Propagation

Insertion ‘in the middle’

- Propagators know incumbent solution
- Only propagate non-binding implications
- e.g. don’t “set” s_1 s_2 here:
- But 1 is removed from s_4, s_6
- Can calculate earliest start, latest start to bound start time
- Can calculate feasible inserts, and update s vars appropriately
- Strong propagation for capacity, time constraints
Example (1 cdyt)

<table>
<thead>
<tr>
<th></th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
<th>R8</th>
<th>R9</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_i</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E_i</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>L_i</td>
<td>150</td>
<td>65</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>S_i</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>V1</th>
<th>V2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_k</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

+ Request Compatibility

Different Routes: R2, R4
Initial

<table>
<thead>
<tr>
<th></th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
<th>R8</th>
<th>R9</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0,2-5, 8,9</td>
<td>0,1, 3-5,8,9</td>
<td>0-2, 4,5,8,9</td>
<td>0-3,5, 8,9</td>
<td>0-4, 8,9</td>
<td>1-5, 8</td>
<td>1-5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>r_i</td>
<td>0,1,2</td>
<td>0,1,2</td>
<td>0,1,2</td>
<td>0,1,2</td>
<td>0,1,2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>t_i</td>
<td>20-150</td>
<td>20-65</td>
<td>20-150</td>
<td>20-150</td>
<td>20-150</td>
<td>0</td>
<td>0</td>
<td>0-200</td>
<td>0-200</td>
</tr>
<tr>
<td>q_i</td>
<td>0-30</td>
<td>0-30</td>
<td>0-30</td>
<td>0-30</td>
<td>0-30</td>
<td>0</td>
<td>0</td>
<td>0-30</td>
<td>0-30</td>
</tr>
</tbody>
</table>
Initial

<table>
<thead>
<tr>
<th></th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
<th>R8</th>
<th>R9</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0,2-5, 8,9</td>
<td>0,1, 3-5,8,9</td>
<td>0-2, 4,5,8,9</td>
<td>0-3,5, 8,9</td>
<td>0-4, 8,9</td>
<td>1-5, 8</td>
<td>1-5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>r_i</td>
<td>0,1,2</td>
<td>0,1,2</td>
<td>0,1,2</td>
<td>0,1,2</td>
<td>0,1,2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>t_i</td>
<td>51-150</td>
<td>32-65</td>
<td>42-150</td>
<td>50-150</td>
<td>30-150</td>
<td>0</td>
<td>0</td>
<td>0-200</td>
<td>0-200</td>
</tr>
<tr>
<td>q_i</td>
<td>0-30</td>
<td>0-30</td>
<td>0-30</td>
<td>0-30</td>
<td>0-30</td>
<td>0</td>
<td>0</td>
<td>0-30</td>
<td>0-30</td>
</tr>
</tbody>
</table>

Initial propagations (arrive time)
Initial

<table>
<thead>
<tr>
<th></th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
<th>R8</th>
<th>R9</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0, 3-5,8,9</td>
<td>0,1, 3-5,8,9</td>
<td>0,2 4,5,8,9</td>
<td>0,1 3,5,8,9</td>
<td>0,1 3,4,8,9</td>
<td>1-5, 8</td>
<td>1-5, 8</td>
<td>1-5, 8</td>
<td>0, 0, 0</td>
</tr>
<tr>
<td>r_i</td>
<td>0,1,2</td>
<td>0,1,2</td>
<td>0,1,2</td>
<td>0,1,2</td>
<td>0,1,2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>t_i</td>
<td>51-150</td>
<td>32-65</td>
<td>42-150</td>
<td>50-150</td>
<td>30-150</td>
<td>0</td>
<td>0</td>
<td>0-200</td>
<td>0-200</td>
</tr>
<tr>
<td>q_i</td>
<td>0-30</td>
<td>0-30</td>
<td>0-30</td>
<td>0-30</td>
<td>0-30</td>
<td>0</td>
<td>0</td>
<td>0-30</td>
<td>0-30</td>
</tr>
</tbody>
</table>

Initial propagations (time windows)
Initial propagations (compatibility constraint)

<table>
<thead>
<tr>
<th></th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
<th>R8</th>
<th>R9</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0, 3-5,8,9</td>
<td>0,1, 3,5,8,9</td>
<td>0-2, 4,5,8,9</td>
<td>0,1, 3,5,8,9</td>
<td>0,1, 3,4,8,9</td>
<td>1-5, 8</td>
<td>1-5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>r_i</td>
<td>0,1,2</td>
<td>0,1,2</td>
<td>0,1,2</td>
<td>0,1,2</td>
<td>0,1,2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>t_i</td>
<td>51-150</td>
<td>32-65</td>
<td>42-150</td>
<td>50-150</td>
<td>30-150</td>
<td>0</td>
<td>0</td>
<td>0-200</td>
<td>0-200</td>
</tr>
<tr>
<td>q_i</td>
<td>0-30</td>
<td>0-30</td>
<td>0-30</td>
<td>0-30</td>
<td>0-30</td>
<td>0</td>
<td>0</td>
<td>0-30</td>
<td>0-30</td>
</tr>
</tbody>
</table>
Choose R5 after R7 (start V2)

<table>
<thead>
<tr>
<th></th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
<th>R8</th>
<th>R9</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0, 3-5,8,9</td>
<td>0,1, 3,5,8,9</td>
<td>0-2 4,5,8,9</td>
<td>0,1 3,5,8,9</td>
<td>0,1 3,4,8,9</td>
<td>1-5, 8</td>
<td>1-5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>r_i</td>
<td>0,1,2</td>
<td>0,1,2</td>
<td>0,1,2</td>
<td>0,1,2</td>
<td>0,1,2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>t_i</td>
<td>51-150</td>
<td>32-65</td>
<td>42-150</td>
<td>50-150</td>
<td>30-150</td>
<td>0</td>
<td>0</td>
<td>0-200</td>
<td>0-200</td>
</tr>
<tr>
<td>q_i</td>
<td>0-30</td>
<td>0-30</td>
<td>0-30</td>
<td>0-30</td>
<td>0-30</td>
<td>0</td>
<td>0</td>
<td>0-30</td>
<td>0-30</td>
</tr>
</tbody>
</table>
Choose R5 after R7 (start V2)

<table>
<thead>
<tr>
<th></th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
<th>R8</th>
<th>R9</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0, 3-5,8,9</td>
<td>0,1, 3,5,8,9</td>
<td>0-2, 4,5,8,9</td>
<td>0,1, 3,5,8,9</td>
<td>0,1, 3,4,8,9,9</td>
<td>1-4, 8</td>
<td>1-5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>r_i</td>
<td>0,1,2</td>
<td>0,1,2</td>
<td>0,1,2</td>
<td>0,1,2</td>
<td>0,1,2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>t_i</td>
<td>51-150</td>
<td>32-65</td>
<td>42-150</td>
<td>50-150</td>
<td>30-150</td>
<td>0</td>
<td>0</td>
<td>0-200</td>
<td>0-200</td>
</tr>
<tr>
<td>q_i</td>
<td>0-30</td>
<td>0-30</td>
<td>0-30</td>
<td>0-30</td>
<td>0-30</td>
<td>0</td>
<td>0</td>
<td>0-30</td>
<td>0-30</td>
</tr>
</tbody>
</table>

Propagate successor implications
Choose R5 after R7 (start V2)

<table>
<thead>
<tr>
<th></th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
<th>R8</th>
<th>R9</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0, 3-5,8,9</td>
<td>0,1, 3,5,8,9</td>
<td>0-2, 4,5,8,9</td>
<td>0,1, 3,5,8,9</td>
<td>0,1, 3,4,9</td>
<td>1-4, 8</td>
<td>1-5</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>r_i</td>
<td>0,1,2</td>
<td>0,1,2</td>
<td>0,1,2</td>
<td>0,1,2</td>
<td>0,1,2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>t_i</td>
<td>51-150</td>
<td>32-65</td>
<td>42-150</td>
<td>50-150</td>
<td>30-150</td>
<td>0</td>
<td>0</td>
<td>0-200</td>
<td>60-200</td>
<td></td>
</tr>
<tr>
<td>q_i</td>
<td>0-30</td>
<td>0-30</td>
<td>0-30</td>
<td>0-30</td>
<td>10-30</td>
<td>0</td>
<td>0</td>
<td>0-30</td>
<td>10-30</td>
<td></td>
</tr>
</tbody>
</table>

Propagate changes to time and load
Choose R5 after R7 (start V2)

<table>
<thead>
<tr>
<th></th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
<th>R8</th>
<th>R9</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0, 3-5, 8, 9</td>
<td>0, 1, 3, 5, 8, 9</td>
<td>0-2, 4, 5, 8, 9</td>
<td>0, 1, 3, 5, 8, 9</td>
<td>0, 1, 3, 4, 9</td>
<td>1-4, 8</td>
<td>1-5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>r_i</td>
<td>0, 1, 2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>t_i</td>
<td>51-150</td>
<td>32-65</td>
<td>42-150</td>
<td>50-150</td>
<td>30-150</td>
<td>0</td>
<td>0</td>
<td>0-200</td>
<td>60-200</td>
</tr>
<tr>
<td>q_i</td>
<td>0-30</td>
<td>0-30</td>
<td>0-30</td>
<td>0-30</td>
<td>0-30</td>
<td>0</td>
<td>0</td>
<td>0-30</td>
<td>10-30</td>
</tr>
</tbody>
</table>

Bind route var
Choose R2 after R7 (start V2)

<table>
<thead>
<tr>
<th></th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
<th>R8</th>
<th>R9</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0, 3-5, 8, 9</td>
<td>0, 1, 3, 5, 8, 9</td>
<td>0-2, 4-5, 8, 9</td>
<td>0, 1, 3, 5, 8, 9</td>
<td>0, 1, 3, 4, 9</td>
<td>1-4, 8, 1-5, 0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>r_i</td>
<td>0, 1, 2,</td>
<td>0, 1, 2,</td>
<td>0, 1, 2,</td>
<td>0, 1, 2,</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>t_i</td>
<td>51-150, 32-65</td>
<td>42-150, 50-150</td>
<td>30-150, 0</td>
<td>0</td>
<td>0</td>
<td>0-200, 60-200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>q_i</td>
<td>0-30</td>
<td>0-30</td>
<td>0-30</td>
<td>0-30</td>
<td>10-30</td>
<td>0</td>
<td>0</td>
<td>0-30</td>
<td>10-30</td>
</tr>
</tbody>
</table>
Choose R2 after R7 (start V2)

<table>
<thead>
<tr>
<th></th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
<th>R8</th>
<th>R9</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0,</td>
<td>1,3,5</td>
<td>0-2</td>
<td>0,1</td>
<td>1,3,4,9</td>
<td>1,3,4,8</td>
<td>1-4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3-5,8,9</td>
<td>4,5,8,9</td>
<td>3,5,8,9</td>
<td>9</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r_i</td>
<td>0,1,2</td>
<td>0,1,2</td>
<td>0,1,2</td>
<td>0,1,2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>t_i</td>
<td>51-150</td>
<td>32-65</td>
<td>42-150</td>
<td>50-150</td>
<td>30-150</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>0-30</td>
<td>0-30</td>
<td>0-30</td>
<td>0-30</td>
<td>10-30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Propagate successor implications
Choose R2 after R7 (start V2)

<table>
<thead>
<tr>
<th></th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
<th>R8</th>
<th>R9</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0,</td>
<td>1,3,5</td>
<td>0-2</td>
<td>0,1</td>
<td>1,3,4,</td>
<td>1,3,4,</td>
<td>1-4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3-5,8,9</td>
<td>4,5,8,9</td>
<td>3,5,8,9</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r_i</td>
<td>0,1,2</td>
<td>0,1,2</td>
<td>0,1,2</td>
<td>0,1,2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>t_i</td>
<td>51-150</td>
<td>32-65</td>
<td>42-150</td>
<td>50-150</td>
<td>78-150</td>
<td>0</td>
<td>0</td>
<td>200</td>
<td>118-200</td>
</tr>
<tr>
<td>q_i</td>
<td>0-30</td>
<td>10-30</td>
<td>0-30</td>
<td>0-30</td>
<td>20-30</td>
<td>0</td>
<td>0</td>
<td>0-30</td>
<td>20-30</td>
</tr>
</tbody>
</table>

Update load and time
Choose R2 after R7 (start V2)

<table>
<thead>
<tr>
<th></th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
<th>R8</th>
<th>R9</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0, 3-5,8,9</td>
<td>1,3,5</td>
<td>0-2</td>
<td>0,1</td>
<td>1,3,4,9</td>
<td>1,3,4,8</td>
<td>1-4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>r_i</td>
<td>0,1,2</td>
<td>0,1,2</td>
<td>0,1,2</td>
<td>0,1,2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>t_i</td>
<td>51-150</td>
<td>32-65</td>
<td>42-150</td>
<td>50-150</td>
<td>78-150</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>118-200</td>
</tr>
<tr>
<td>q_i</td>
<td>0-30</td>
<td>10-30</td>
<td>0-30</td>
<td>0-30</td>
<td>20-30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20-30</td>
</tr>
</tbody>
</table>

Bind route var
Choose R2 after R7 (start V2)

<table>
<thead>
<tr>
<th></th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
<th>R8</th>
<th>R9</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0, 3-5,8,9</td>
<td>1,3,5</td>
<td>0-2</td>
<td>0,1,3,8</td>
<td>1,3,4,9</td>
<td>1,3,4,9</td>
<td>1-3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>r_i</td>
<td>0,1,2</td>
<td>2</td>
<td>0,1,2</td>
<td>0,1,2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>t_i</td>
<td>51-150</td>
<td>32-65</td>
<td>42-150</td>
<td>50-150</td>
<td>78-150</td>
<td>0</td>
<td>0</td>
<td>0-200</td>
<td>118-200</td>
</tr>
<tr>
<td>q_i</td>
<td>0-30</td>
<td>10-30</td>
<td>0-30</td>
<td>0-30</td>
<td>20-30</td>
<td>0</td>
<td>0</td>
<td>0-30</td>
<td>20-30</td>
</tr>
</tbody>
</table>

Propagate request compatibility constraint
Choose R3 after R2

<table>
<thead>
<tr>
<th></th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
<th>R8</th>
<th>R9</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0, 3-5, 8, 9</td>
<td>1, 3, 5</td>
<td>0-2, 4, 5, 8, 9</td>
<td>0, 1, 3, 8</td>
<td>1, 3, 9</td>
<td>1, 3, 4, 8</td>
<td>1-3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>r_i</td>
<td>0, 1, 2</td>
<td>2</td>
<td>0, 1, 2</td>
<td>0, 1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>t_i</td>
<td>51-150</td>
<td>32-65</td>
<td>42-150</td>
<td>50-150</td>
<td>78-150</td>
<td>0</td>
<td>0</td>
<td>0-200</td>
<td>118-200</td>
</tr>
<tr>
<td>q_i</td>
<td>0-30</td>
<td>10-30</td>
<td>0-30</td>
<td>0-30</td>
<td>20-30</td>
<td>0</td>
<td>0</td>
<td>0-30</td>
<td>20-30</td>
</tr>
</tbody>
</table>
Choose R3 after R2

<table>
<thead>
<tr>
<th></th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
<th>R8</th>
<th>R9</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0, 3-5, 8, 9</td>
<td>1, 3, 5</td>
<td>1, 4, 5</td>
<td>0, 1, 3, 8</td>
<td>1, 3, 9</td>
<td>1, 3, 4, 8</td>
<td>1, 2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>r_i</td>
<td>0, 1, 2</td>
<td>2</td>
<td>0, 1, 2</td>
<td>0, 1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>t_i</td>
<td>51-150</td>
<td>32-65</td>
<td>42-150</td>
<td>50-150</td>
<td>78-150</td>
<td>0</td>
<td>0</td>
<td>0-200</td>
<td>118-200</td>
</tr>
<tr>
<td>q_i</td>
<td>0-30</td>
<td>10-30</td>
<td>0-30</td>
<td>0-30</td>
<td>20-30</td>
<td>0</td>
<td>0</td>
<td>0-30</td>
<td>20-30</td>
</tr>
</tbody>
</table>

Propagate successor implications
Choose R3 after R2

<table>
<thead>
<tr>
<th>s_i</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
<th>R8</th>
<th>R9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 3-5,8,9</td>
<td>1,3</td>
<td>1,4,5</td>
<td>0,1,3,8</td>
<td>1,9</td>
<td>1,4,8</td>
<td>1,2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>r_i</td>
<td>0,1,2</td>
<td>2</td>
<td>0,1,2</td>
<td>0,1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>t_i</td>
<td>51-150</td>
<td>32-65</td>
<td>62-110</td>
<td>50-150</td>
<td>102-150</td>
<td>0</td>
<td>0</td>
<td>0-200</td>
<td>142-200</td>
</tr>
<tr>
<td>q_i</td>
<td>0-30</td>
<td>10-30</td>
<td>20-30</td>
<td>0-30</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0-30</td>
<td>30</td>
</tr>
</tbody>
</table>

Update time and load
Choose R3 after R2

<table>
<thead>
<tr>
<th></th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
<th>R8</th>
<th>R9</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0, 3-5, 8, 9</td>
<td>1, 3</td>
<td>1, 4, 5</td>
<td>0, 1, 3, 8</td>
<td>1, 9</td>
<td>1, 4, 8</td>
<td>1, 2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>r_i</td>
<td>0, 1, 2</td>
<td>2</td>
<td>0, 1, 2</td>
<td>0, 1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>t_i</td>
<td>51-150</td>
<td>32-65</td>
<td>62-110</td>
<td>50-150</td>
<td>102-150</td>
<td>0</td>
<td>0</td>
<td>0-200</td>
<td>142-200</td>
</tr>
<tr>
<td>q_i</td>
<td>0-30</td>
<td>10-30</td>
<td>20-30</td>
<td>0-30</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0-30</td>
<td>30</td>
</tr>
</tbody>
</table>

Bind route var
Choose R3 after R2

<table>
<thead>
<tr>
<th></th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
<th>R8</th>
<th>R9</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0, 3-5,8,9</td>
<td>1,3</td>
<td>1,4,5</td>
<td>0,1,8</td>
<td>1,9</td>
<td>1,4,8</td>
<td>1,2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>r_i</td>
<td>0,1,2</td>
<td>2</td>
<td>2</td>
<td>0,1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>t_i</td>
<td>51-150</td>
<td>32-65</td>
<td>62-110</td>
<td>50-150</td>
<td>102-150</td>
<td>0</td>
<td>0</td>
<td>0-200</td>
<td>142-200</td>
</tr>
<tr>
<td>q_i</td>
<td>0-30</td>
<td>10-30</td>
<td>20-30</td>
<td>0-30</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0-30</td>
<td>30</td>
</tr>
</tbody>
</table>

Propagate request incompatibility constraint
Choose R3 after R2

<table>
<thead>
<tr>
<th></th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
<th>R8</th>
<th>R9</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0,4,8,3</td>
<td>5</td>
<td>0,1,8</td>
<td>9</td>
<td>1,4,8</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>r_i</td>
<td>0,1,8</td>
<td>2</td>
<td>2</td>
<td>0,1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>t_i</td>
<td>51-150</td>
<td>32-65</td>
<td>62-110</td>
<td>50-150</td>
<td>102-150</td>
<td>0</td>
<td>0</td>
<td>0-200</td>
<td>142-200</td>
</tr>
<tr>
<td>q_i</td>
<td>0-30</td>
<td>10-30</td>
<td>20-30</td>
<td>0-30</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0-30</td>
<td>30</td>
</tr>
</tbody>
</table>

Propagate effects of full load
Choose R4 after R6 (start V1)

<table>
<thead>
<tr>
<th></th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
<th>R8</th>
<th>R9</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0,4,8</td>
<td>3</td>
<td>5</td>
<td>0,1,8</td>
<td>9</td>
<td>1,4,8</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>r_i</td>
<td>0,1</td>
<td>2</td>
<td>2</td>
<td>0,1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>t_i</td>
<td>51-150</td>
<td>32-65</td>
<td>62-110</td>
<td>50-150</td>
<td>102-150</td>
<td>0</td>
<td>0</td>
<td>0-200</td>
<td>142-200</td>
</tr>
<tr>
<td>q_i</td>
<td>0-30</td>
<td>10-30</td>
<td>20-30</td>
<td>0-30</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0-30</td>
<td>30</td>
</tr>
</tbody>
</table>
Choose R4 after R6 (start V1)

<table>
<thead>
<tr>
<th></th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
<th>R8</th>
<th>R9</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0,4,8</td>
<td>3</td>
<td>5</td>
<td>1,8</td>
<td>9</td>
<td>1,4,8</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>r_i</td>
<td>0,1</td>
<td>2</td>
<td>2</td>
<td>0,1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>t_i</td>
<td>51-150</td>
<td>32-65</td>
<td>62-110</td>
<td>50-150</td>
<td>102-150</td>
<td>0</td>
<td>0</td>
<td>0-200</td>
<td>142-200</td>
</tr>
<tr>
<td>q_i</td>
<td>0-30</td>
<td>10-30</td>
<td>20-30</td>
<td>0-30</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0-30</td>
<td>30</td>
</tr>
</tbody>
</table>

Propagate successor implications
Choose R4 after R6 (start V1)

<table>
<thead>
<tr>
<th></th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
<th>R8</th>
<th>R9</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0,4,8</td>
<td>3</td>
<td>5</td>
<td>1,8</td>
<td>9</td>
<td>1,4</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>r_i</td>
<td>0,1</td>
<td>2</td>
<td>2</td>
<td>0,1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>t_i</td>
<td>51-150</td>
<td>32-65</td>
<td>62-110</td>
<td>50-140</td>
<td>102-150</td>
<td>0</td>
<td>0</td>
<td>110-200</td>
<td>142-200</td>
</tr>
<tr>
<td>q_i</td>
<td>0-30</td>
<td>10-30</td>
<td>20-30</td>
<td>10-30</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>10-30</td>
<td>30</td>
</tr>
</tbody>
</table>

Update time and load
Choose R4 after R6 (start V1)
Choose R4 after R6 (start V1)

<table>
<thead>
<tr>
<th></th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
<th>R8</th>
<th>R9</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0,4,8</td>
<td>3</td>
<td>5</td>
<td>1,8</td>
<td>9</td>
<td>1,4</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>r_i</td>
<td>0,1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>t_i</td>
<td>51-150</td>
<td>32-65</td>
<td>62-110</td>
<td>50-140</td>
<td>102-150</td>
<td>0</td>
<td>0</td>
<td>110-200</td>
<td>142-200</td>
</tr>
<tr>
<td>q_i</td>
<td>0-30</td>
<td>10-30</td>
<td>20-30</td>
<td>10-30</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>10-30</td>
<td>30</td>
</tr>
</tbody>
</table>

Bind route var
Choose R1 after R4

<table>
<thead>
<tr>
<th></th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
<th>R8</th>
<th>R9</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0.4,8</td>
<td>3</td>
<td>5</td>
<td>1,8</td>
<td>9</td>
<td>1.4</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>r_i</td>
<td>0,1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>t_i</td>
<td>51-150</td>
<td>32-65</td>
<td>62-110</td>
<td>50-140</td>
<td>102-150</td>
<td>0</td>
<td>0</td>
<td>110-200</td>
<td>142-200</td>
</tr>
<tr>
<td>a_i</td>
<td>0-30</td>
<td>10-30</td>
<td>20-30</td>
<td>10-30</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>10-30</td>
<td>30</td>
</tr>
</tbody>
</table>
Choose R1 after R4

<table>
<thead>
<tr>
<th></th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
<th>R8</th>
<th>R9</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0,4,8</td>
<td>3</td>
<td>5</td>
<td>1,6</td>
<td>9</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>r_i</td>
<td>0,1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>t_i</td>
<td>51-150</td>
<td>32-65</td>
<td>62-110</td>
<td>50-140</td>
<td>102-150</td>
<td>0</td>
<td>0</td>
<td>110-200</td>
<td>142-200</td>
</tr>
<tr>
<td>q_i</td>
<td>0-30</td>
<td>10-30</td>
<td>20-30</td>
<td>10-30</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>10-30</td>
<td>30</td>
</tr>
</tbody>
</table>

Propagate successor implications
Choose R1 after R4

<table>
<thead>
<tr>
<th></th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
<th>R8</th>
<th>R9</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>8</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>9</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>r_i</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>t_i</td>
<td>70-139</td>
<td>32-65</td>
<td>62-110</td>
<td>50-119</td>
<td>102-150</td>
<td>0</td>
<td>0</td>
<td>131-200</td>
<td>142-200</td>
</tr>
<tr>
<td>q_i</td>
<td>20-30</td>
<td>10-30</td>
<td>20-30</td>
<td>10-30</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>20-30</td>
<td>30</td>
</tr>
</tbody>
</table>

Update load and time, and route var
Choose R1 after R4
Choose R1 after R4

<table>
<thead>
<tr>
<th></th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
<th>R8</th>
<th>R9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_i)</td>
<td>8</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>9</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(r_i)</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>(t_i)</td>
<td>70-139</td>
<td>32-65</td>
<td>62-110</td>
<td>50-119</td>
<td>102-150</td>
<td>0</td>
<td>0</td>
<td>131-200</td>
<td>142-200</td>
</tr>
<tr>
<td>(q_i)</td>
<td>20-30</td>
<td>10-30</td>
<td>20-30</td>
<td>10-30</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>20-30</td>
<td>30</td>
</tr>
</tbody>
</table>

Update load and time, and route var
Choose R1 after R4

<table>
<thead>
<tr>
<th></th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
<th>R8</th>
<th>R9</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>8</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>9</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>r_i</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>t_i</td>
<td>70</td>
<td>32</td>
<td>62</td>
<td>50</td>
<td>102</td>
<td>0</td>
<td>0</td>
<td>131</td>
<td>142</td>
</tr>
<tr>
<td>q_i</td>
<td>20</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>30</td>
</tr>
</tbody>
</table>

FINISHED! Bind remaining vars to min val
Data

We know (note uppercase)

- V_i: The ‘value’ of customer i
- D_{ik}: Demand by customer i for commodity k
- E_i: Earliest time to start service at i
- L_i: Latest time to start service at i
- S_i: Service time of visit at i
- Q_{jk}: Capacity of vehicle j for commodity k
- T_{ij}: Travel time from visit i to visit j
- C_{ij}: Cost (w.r.t. objective) of travel from i to j
Insertion

• Allows for maximum propagation
• Allows constraints to influence solution progressively

• e.g. Blood delivery constraints
 – Delivery within 20 minutes of pickup
 – As soon as one is fixed implication flows to other

• e.g. Driver break
 – Extra request (*a-priori*) with time constraints that relate to other breaks
 – Special propagator that removes requests that cannot be inserted in a route without violating rules
Local Search

- Can apply std local search methods VRPs
 - k-opt
 - Or-opt
 - exchange
 - ...
- Step from solution to solution, so
- CP is only used as rule-checker
 - Little use of propagation

- (Constraint-based local search (e.g. Invariants) not yet widely available)
Large Neighbourhood Search

• LNS destroys then re-creates

• Creation methods can leverage propagation

• LNS *can* use the full power of CP
Large Neighbourhood Search revisited
Large Neighbourhood Search

Destroy & Re-create

- Destroy part of the solution
 - Remove visits from the solution
- Re-create solution
 - Use favourite construct method to re-insert customers
- If the solution is better, keep it
- Repeat
Large Neighbourhood Search

Destroy part of the solution (Select method)

In CP terms, this means:

• Relax some variable assignments

In CP-VRP terms, this means

• Relax some successor assignments, i.e.
• ‘Unassign” some visits.
Large Neighbourhood Search

Destroy part of the solution (*Select* method)

Examples

- Remove a sequence of visits
Large Neighbourhood Search

Destroy part of the solution (Select method)

Examples

- Choose longest (worst) arc in solution
 - Remove visits at each end
 - Remove nearby visits
- Actually, choose \(r^{th} \) worst
- \(r = n \ast (\text{uniform}(0,1))^y \)
- \(y \sim 6 \)
 - \(0.5^6 = 0.016 \)
 - \(0.9^6 = 0.531 \)
Large Neighbourhood Search

Destroy part of the solution (*Select* method)

Examples

- Dump visits from k routes ($k = 1, 2, 3$)
 - Prefer routes that are close,
 - Better yet, overlapping
Large Neighbourhood Search

Destroy part of the solution (*Select* method)

Examples

- Choose first visit randomly
- Then, remove “related” visits
 - Based on distance, time compatibility, load

\[R_{ij} = \varphi C_{ij} + \chi(|a_i - a_j|) + \psi(|q_i - q_j|) \]
Large Neighbourhood Search

Destroy part of the solution (*Select* method)

Examples

- Dump visits from the smallest route
 - Good if saving vehicles
 - Sometimes fewer vehicles = reduced travel
Large Neighbourhood
Search

Destroy part of the solution (*Select* method)

- Parameter: Max to dump
 - As a % of n?
 - As a fixed number e.g. 100 for large problems

- Actual number is uniform rand (5, max)
Large Neighbourhood Search

Re-create solution

• Use complete search
 – for small n, or highly-constrained problems
 – Works for assign-to-successor search

• Use semi-complete search
 – If you have a heuristic you trust, use Limited Discrepancy Search
 – Depth-bounded search
 – Fail-bounded
 – Time-bounded
Large Neighbourhood Search

Re-create solution

- Insertion methods are good creation methods
- Also make good re-create methods for LNS

- Use insert method to guide Limited Discrepancy Search

- Use a portfolio of insert methods
 - Diversify search
Large Neighbourhood Search

Re-create solution

- Insert methods differ by choice of:
 - Which visit to insert
 - Where to insert it

- Where to insert:
 - Usually in position that increases cost by least
 - Also consider ‘spare time’ – choose position that maintains the maximum spare time

- Which to insert:
 - Many choices
Recreate solution

Which to insert

• Examples:
 – Nearest Neighbour
 • Unassigned visit closest to last visit
 – Random
 • Choose visit to insert at random
 – Minimum insert cost
 • Choose visit that increases cost by the least
 – Regret, 3-Regret, 4-Regret
 • Choose visit with maximum difference between first and next best insert position
Regret
Regret
Regret
Regret
Regret
Regret

\[\text{Regret} = C(\text{insert in 2^{nd}-best route}) - C(\text{insert in best route}) \]
\[= f(2, i) - f(1, i) \]

\[\text{K-Regret} = \sum_{k=1}^{K} (f(k, i) - f(1, i)) \]
Large Neighbourhood Search

If the solution is better, keep it

- Can use Hill-climbing
- Can use Simulated Annealing
- Can use Threshold Annealing
- ...

Repeat

- Can use fail limit (limit on number of infeasibilities found)
- Can use time limit
- Can use Restarts
- Can use limited number of iterations
Advanced techniques

Randomized Adaptive Decomposition

- Partition problem into subproblems
- Work on each subproblem in turn
- Decomposition ‘adapts’
 - Changes in response to incumbent solution
Solving VRPs

- CP is “natural” for solving vehicle routing problems
 - Real problems often have unique constraints
 - Easy to change CP model to include new constraints
 - New constraints don’t change core solve method
 - Infrastructure for complete (completish) search in subproblems

- LNS is “natural” for CP
 - Insertion leverages propagation

oh, and one more thing
Announcement

NICTA is hiring

• Seeking recent PhD with good publication record
• Work in Logistics and Supply Chain
• Work with Pascal van Hentenryck + me
• Research + Software development
• Lots of Constraint Programming
• Work on next-generation CP system
• Canberra-based

• See NICTA web pages, or talk to me later
 www.nicta.com.au