
Barcelogic - Tech. Univ. Catalonia (UPC)

A Parametric Approach for
Smaller and Better Encodings

of Cardinality Constraints

CP 2013 - Uppsala
Robert Nieuwenhuis

+ Ignasi Abı́o, Albert Oliveras, Enric Rodrı́guez

Barcelogic Research Group, Tech. Univ. Catalonia, Barcelona

CP 2013 – p. 1

Barcelogic - Tech. Univ. Catalonia (UPC)

Outline of this talk

CP 2013 – p. 2

Barcelogic - Tech. Univ. Catalonia (UPC)

Outline of this talk

Modern SAT solvers. Why do they work so well?

CP 2013 – p. 2

Barcelogic - Tech. Univ. Catalonia (UPC)

Outline of this talk

Modern SAT solvers. Why do they work so well?

Encoding a constraint for SAT

CP 2013 – p. 2

Barcelogic - Tech. Univ. Catalonia (UPC)

Outline of this talk

Modern SAT solvers. Why do they work so well?

Encoding a constraint for SAT

For each constraint: encode it or build it in?

CP 2013 – p. 2

Barcelogic - Tech. Univ. Catalonia (UPC)

Outline of this talk

Modern SAT solvers. Why do they work so well?

Encoding a constraint for SAT

For each constraint: encode it or build it in?

In any case, better encodings are crucial

CP 2013 – p. 2

Barcelogic - Tech. Univ. Catalonia (UPC)

Outline of this talk

Modern SAT solvers. Why do they work so well?

Encoding a constraint for SAT

For each constraint: encode it or build it in?

In any case, better encodings are crucial

Can do a lot of work at encoding time!

CP 2013 – p. 2

Barcelogic - Tech. Univ. Catalonia (UPC)

Outline of this talk

Modern SAT solvers. Why do they work so well?

Encoding a constraint for SAT

For each constraint: encode it or build it in?

In any case, better encodings are crucial

Can do a lot of work at encoding time!

What makes a good encoding for a given problem instance?

CP 2013 – p. 2

Barcelogic - Tech. Univ. Catalonia (UPC)

Outline of this talk

Modern SAT solvers. Why do they work so well?

Encoding a constraint for SAT

For each constraint: encode it or build it in?

In any case, better encodings are crucial

Can do a lot of work at encoding time!

What makes a good encoding for a given problem instance?

“Optimal” encodings for cardinality constraints

CP 2013 – p. 2

Barcelogic - Tech. Univ. Catalonia (UPC)

Outline of this talk

Modern SAT solvers. Why do they work so well?

Encoding a constraint for SAT

For each constraint: encode it or build it in?

In any case, better encodings are crucial

Can do a lot of work at encoding time!

What makes a good encoding for a given problem instance?

“Optimal” encodings for cardinality constraints

Experimental results

CP 2013 – p. 2

Barcelogic - Tech. Univ. Catalonia (UPC)

Outline of this talk

Modern SAT solvers. Why do they work so well?

Encoding a constraint for SAT

For each constraint: encode it or build it in?

In any case, better encodings are crucial

Can do a lot of work at encoding time!

What makes a good encoding for a given problem instance?

“Optimal” encodings for cardinality constraints

Experimental results

Concluding remarks

CP 2013 – p. 2

Barcelogic - Tech. Univ. Catalonia (UPC)

Why are modern SAT solvers so good?

Decades of academic and industrial efforts in SAT
Lots of $$$ from, e.g., EDA (Electronic Design Automation)

CP 2013 – p. 3

Barcelogic - Tech. Univ. Catalonia (UPC)

Why are modern SAT solvers so good?

Decades of academic and industrial efforts in SAT
Lots of $$$ from, e.g., EDA (Electronic Design Automation)

Lesson: Real-world problems 6= random or artificial ones !

CP 2013 – p. 3

Barcelogic - Tech. Univ. Catalonia (UPC)

Why are modern SAT solvers so good?

Decades of academic and industrial efforts in SAT
Lots of $$$ from, e.g., EDA (Electronic Design Automation)

Lesson: Real-world problems 6= random or artificial ones !

SAT gives us complete systematic search solvers:

outperforming other methods

on real-world problems from many sources, with a

single, fully automatic, push-button, var selection strategy!

Hence modeling is essentially declarative.

CP 2013 – p. 3

Barcelogic - Tech. Univ. Catalonia (UPC)

Why are modern SAT solvers so good?

Decades of academic and industrial efforts in SAT
Lots of $$$ from, e.g., EDA (Electronic Design Automation)

Lesson: Real-world problems 6= random or artificial ones !

SAT gives us complete systematic search solvers:

outperforming other methods

on real-world problems from many sources, with a

single, fully automatic, push-button, var selection strategy!

Hence modeling is essentially declarative.

BUT...

Very low-level language: need modeling and encoding tools

Sometimes no adequate/compact encodings: arithmetic...

Answers “unsat” or model. Optimization not as well studied.

CP 2013 – p. 3

Barcelogic - Tech. Univ. Catalonia (UPC)

DPLL (or CDCL) SAT Solvers

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

CP 2013 – p. 4

Barcelogic - Tech. Univ. Catalonia (UPC)

DPLL (or CDCL) SAT Solvers

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form A||F (see [NOT], JACM’06):

Assignment A : Clause set F :

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒

CP 2013 – p. 4

Barcelogic - Tech. Univ. Catalonia (UPC)

DPLL (or CDCL) SAT Solvers

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form A||F (see [NOT], JACM’06):

Assignment A : Clause set F :

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)

CP 2013 – p. 4

Barcelogic - Tech. Univ. Catalonia (UPC)

DPLL (or CDCL) SAT Solvers

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form A||F (see [NOT], JACM’06):

Assignment A : Clause set F :

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)

CP 2013 – p. 4

Barcelogic - Tech. Univ. Catalonia (UPC)

DPLL (or CDCL) SAT Solvers

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form A||F (see [NOT], JACM’06):

Assignment A : Clause set F :

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)

CP 2013 – p. 4

Barcelogic - Tech. Univ. Catalonia (UPC)

DPLL (or CDCL) SAT Solvers

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form A||F (see [NOT], JACM’06):

Assignment A : Clause set F :

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)

CP 2013 – p. 4

Barcelogic - Tech. Univ. Catalonia (UPC)

DPLL (or CDCL) SAT Solvers

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form A||F (see [NOT], JACM’06):

Assignment A : Clause set F :

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)

CP 2013 – p. 4

Barcelogic - Tech. Univ. Catalonia (UPC)

DPLL (or CDCL) SAT Solvers

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form A||F (see [NOT], JACM’06):

Assignment A : Clause set F :

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 5 6 || 1∨2, 3∨4, 5∨6, 6∨5∨2

CP 2013 – p. 4

Barcelogic - Tech. Univ. Catalonia (UPC)

DPLL (or CDCL) SAT Solvers

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form A||F (see [NOT], JACM’06):

Assignment A : Clause set F :

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 5 6 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Backtrack)

CP 2013 – p. 4

Barcelogic - Tech. Univ. Catalonia (UPC)

DPLL (or CDCL) SAT Solvers

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form A||F (see [NOT], JACM’06):

Assignment A : Clause set F :

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 5 6 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Backtrack)
1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2

CP 2013 – p. 4

Barcelogic - Tech. Univ. Catalonia (UPC)

DPLL (or CDCL) SAT Solvers

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form A||F (see [NOT], JACM’06):

Assignment A : Clause set F :

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 5 6 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Backtrack)
1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 model found!

CP 2013 – p. 4

Barcelogic - Tech. Univ. Catalonia (UPC)

DPLL (or CDCL) SAT Solvers

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form A||F (see [NOT], JACM’06):

Assignment A : Clause set F :

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 5 6 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Backtrack)
1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 model found!

More rules: Backjump, Learn, Forget, Restart [M-S,S,M,...]!

CP 2013 – p. 4

Barcelogic - Tech. Univ. Catalonia (UPC)

Backtrack vs. Backjump

Same example as before. Remember: Backtrack gave 1 2 3 4 5.

But: decision level 3 4 is irrelevant for the conflict 6∨5∨2:

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
...

...
...

1 2 3 4 5 6 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Backjump)

CP 2013 – p. 5

Barcelogic - Tech. Univ. Catalonia (UPC)

Backtrack vs. Backjump

Same example as before. Remember: Backtrack gave 1 2 3 4 5.

But: decision level 3 4 is irrelevant for the conflict 6∨5∨2:

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
...

...
...

1 2 3 4 5 6 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Backjump)
1 2 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ . . .

CP 2013 – p. 5

Barcelogic - Tech. Univ. Catalonia (UPC)

Backtrack vs. Backjump

Same example as before. Remember: Backtrack gave 1 2 3 4 5.

But: decision level 3 4 is irrelevant for the conflict 6∨5∨2:

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
...

...
...

1 2 3 4 5 6 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Backjump)
1 2 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ . . .

Backjump =

1. Conflict Analysis: compute backjump clause C ∨ l (here, 2∨5)

that is a logical consequence of F: can Learn it!

that reveals a unit propagation of l at earlier decision
level d (i.e., where its part C is false)

2. Return to decision level d and do the propagation.

CP 2013 – p. 5

Barcelogic - Tech. Univ. Catalonia (UPC)

CDCL Solvers

CP 2013 – p. 6

Barcelogic - Tech. Univ. Catalonia (UPC)

CDCL Solvers

UnitPropagate has priority over Decide.

CP 2013 – p. 6

Barcelogic - Tech. Univ. Catalonia (UPC)

CDCL Solvers

UnitPropagate has priority over Decide.

For Decide, select literal involved in many, recent conflicts
(implemented, e.g., as VSIDS, [Chaff 2001]).

CP 2013 – p. 6

Barcelogic - Tech. Univ. Catalonia (UPC)

CDCL Solvers

UnitPropagate has priority over Decide.

For Decide, select literal involved in many, recent conflicts
(implemented, e.g., as VSIDS, [Chaff 2001]).

When a conflict is found, it is analyzed [M-SS 1999]:
– The derived clause is Learned.
– Backtrack is replaced by Backjump.

CP 2013 – p. 6

Barcelogic - Tech. Univ. Catalonia (UPC)

CDCL Solvers

UnitPropagate has priority over Decide.

For Decide, select literal involved in many, recent conflicts
(implemented, e.g., as VSIDS, [Chaff 2001]).

When a conflict is found, it is analyzed [M-SS 1999]:
– The derived clause is Learned.
– Backtrack is replaced by Backjump.

Periodically, the solver Restarts [Gomes et al 1998].

CP 2013 – p. 6

Barcelogic - Tech. Univ. Catalonia (UPC)

CDCL Solvers

UnitPropagate has priority over Decide.

For Decide, select literal involved in many, recent conflicts
(implemented, e.g., as VSIDS, [Chaff 2001]).

When a conflict is found, it is analyzed [M-SS 1999]:
– The derived clause is Learned.
– Backtrack is replaced by Backjump.

Periodically, the solver Restarts [Gomes et al 1998].

Also periodically, Forget non-active learned clauses [GN 2002].

CP 2013 – p. 6

Barcelogic - Tech. Univ. Catalonia (UPC)

Encoding a constraint for SAT

Example: Cumulative resource constraints [Schutt Et al 2009 CP]:

A number of tasks {1, 2, · · · , n} must be done.

Tasks require some (limited) resources.

Variable ai,t means “task i is active at time t“

Cardinality Constraint:
at every timepoint t, no more active tasks than machines:

a1,t + a2,t + · · ·+ an,t 6 20

Naive (direct) encoding: (n21) clauses of the form:

x1 ∨ . . . ∨ x21

CP 2013 – p. 7

Barcelogic - Tech. Univ. Catalonia (UPC)

Encode it or build it in? (see next talk!)

“Build it in” = “Sat Modulo Theories” or “Lazy Clause Generation”:

Example: building in a cardinality constraint xi + · · ·+ xn 6 K

A propagator watches it

Each time the propagator detects K true variables in

{xi, . . . xn}, it can propagate the remaining ones to false

To explain a propagation: clause of the form
x1 ∧ . . . ∧ xK → y or equivalently x1 ∨ . . . ∨ xK ∨ y

Explanations are needed at least for conflict analysis

But someteimes it is useful to Learn them

Bad situation: end up Learning full (naive) (nK) encoding:
better to use a compact one with auxiliary variables

Encoding is many times better, especially for simpler constraints,
such as Cardinality ones (see next talk).

CP 2013 – p. 8

Barcelogic - Tech. Univ. Catalonia (UPC)

What’s a good encoding for an instance?

“Best encoding” = for this SAT solver on this instance.

But some criteria are usually desirable (for any constraint):

1. the encoding is correct and complete

2. UnitPropagate should preserve generalized arc consistency

3. small number of clauses needed

4. small number of auxiliary variables needed

Here, criteria 1 and 2 will always hold.

But is 3 more important or 4? Depends on solver and instance!

Therefore here we define a single encoding (a much more compact
one) that really optimizes wrt. a cost function λ · #vars+ #clauses,
where λ is decided by the user.
(can in fact optimize wrt. any efficiently computable function).

CP 2013 – p. 9

Barcelogic - Tech. Univ. Catalonia (UPC)

Our encoding

[miniSAT+] Sorting network, O(n log2 n) clauses and aux vars

to sort (x1 . . . xn) into (y1 . . . yn).

To express xi + · · ·+ xn 6 K, add unit clause yk+1.

For . . . > K, add yk. For =, add both.

[Asin et al 2011] onle need (y1 . . . yk): other recursive approach

usingO(n log2 K) clauses and aux vars.
Large improvement since frequently n ≫ K.

This paper:

For small inputs, the naive direct approach is frequently better.

For large inputs, we should use the recursive approach.

Idea: Use recursive until small enough for direct.

Dynamic programming for optimality wrt. λ · #vars+ #clauses

CP 2013 – p. 10

Barcelogic - Tech. Univ. Catalonia (UPC)

Our encoding (II)

We first remove the power-of-two restriction of our
Cardinality networks of [Asin et al 2011].
This already has a significant impact (see below).

The work done at encoding time (dynamic programming) is
negligible wrt. runtime.

Some recursive cases not split into halves, but differently!

Experiments:

We first compare wrt. number of variables and clauses, only
with [Asin et al 2011]: known to be in general better than other
previous approaches

For SAT solver runtime (Lingeling, [Biere]), we also compare
Adder [ES 06], BDD [BBR 06], and with our SMT approach.

CP 2013 – p. 11

Barcelogic - Tech. Univ. Catalonia (UPC)

Experimental Results (Variables)

For 1 ≤ K ≤ 50 and n = 100 (this is representative):

Recursive, power-of-two size [Asin etal 2011]
Recursive, arbitrary size
Mixed, λ = 0.5
Mixed, λ = 5

K

V
a
ri
a
b
le
s

10 20 40

1000

2000

CP 2013 – p. 12

Barcelogic - Tech. Univ. Catalonia (UPC)

Experimental Results (Clauses)

For 1 ≤ K ≤ 50 and n = 100 (this is representative):

Recursive, power-of-two size [Asin etal 2011]
Recursive, arbitrary size
Mixed, λ = 0.5
Mixed, λ = 5

K

C
la
u
se
s

10 20 40

2000

4000

CP 2013 – p. 13

Barcelogic - Tech. Univ. Catalonia (UPC)

Experimental Results (SAT Solving times)

MSU4 Suite: 6496 instances taking >5s (see paper for other suites).
Lingeling, TO 600s.

insts. w/ Speed-up of Mixed ≈ # insts. w/ Slow-down of Mixed

Speed-up factor: Slow-down factor:

∞ >4 >2 >1.5 total total >1.5 >2 >4 ∞

Power-of-two CN 43 732 2957 1278 5010 1438 48 1 23 13 11

Arbitrary-sized CN 10 149 544 726 1429 4835 232 3 106 43 80

Adder 985 1207 1038 1250 4480 1927 89 0 13 36 40

BDD 187 1139 1795 1292 4413 2002 81 4 10 31 36

SMT 1143 323 102 53 1621 3184 1691 0 1417 211 63

What does this mean? Some examples:
– in 187 instances Mixed did not time out but BDD did
– in 1139 instances Mixed was more than 4 times faster than BDD
– in 36 instances Mixed timed out but BDD did not

CP 2013 – p. 14

Barcelogic - Tech. Univ. Catalonia (UPC)

Concluding remarks

This kind of pragmatic work has a big impact in practice
(Barcelogic.com)

Can do a lot of work at encoding time!

Divide and Conquer: even more expensive search at encoding time
could pay off to find the best encoding for a given constraint

Pseudo-Boolean constraints: a1x1 + · · ·+ anxn ≤ K:

Similar ideas mixing direct encodings and recursive ones

Explore shared encoding of several constraints together

Build database of encodings for certain frequent constraints?

Thank you!

CP 2013 – p. 15

	Outline of this talk
	Outline of this talk
	Outline of this talk
	Outline of this talk
	Outline of this talk
	Outline of this talk
	Outline of this talk
	Outline of this talk
	Outline of this talk
	Outline of this talk

	Why are modern SAT solvers so good?
	Why are modern SAT solvers so good?
	Why are modern SAT solvers so good?
	Why are modern SAT solvers so good?

	DPLL (or CDCL) SAT Solvers
	DPLL (or CDCL)
SAT Solvers
	DPLL (or CDCL)
SAT Solvers
	DPLL (or CDCL)
SAT Solvers
	DPLL (or CDCL)
SAT Solvers
	DPLL (or CDCL)
SAT Solvers
	DPLL (or CDCL)
SAT Solvers
	DPLL (or CDCL)
SAT Solvers
	DPLL (or CDCL)
SAT Solvers
	DPLL (or CDCL)
SAT Solvers
	DPLL (or CDCL)
SAT Solvers
	DPLL (or CDCL)
SAT Solvers

	Backtrack vs. Backjump
	Backtrack vs. Backjump
	Backtrack vs. Backjump

	CDCL Solvers
	CDCL Solvers
	CDCL Solvers
	CDCL Solvers
	CDCL Solvers
	CDCL Solvers

	Encoding a constraint for SAT
	Encode it or build it in? (see next talk!)
	What's a good encoding for an instance?
	Our encoding
	Our encoding (II)
	Experimental Results (Variables)
	Experimental Results (Clauses)
	Experimental Results (SAT Solving times)
	Concluding remarks

