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Decades of academic and industrial efforts in SAT
Lots of $$$ from, e.g., EDA (Electronic Design Automation)

Lesson: Real-world problems 6= random or artificial ones !

SAT gives us complete systematic search solvers:

outperforming other methods

on real-world problems from many sources, with a

single, fully automatic, push-button, var selection strategy!

Hence modeling is essentially declarative.

BUT...

Very low-level language: need modeling and encoding tools

Sometimes no adequate/compact encodings: arithmetic...

Answers “unsat” or model. Optimization not as well studied.

CP 2013 – p. 3



Barcelogic - Tech. Univ. Catalonia (UPC)

DPLL (or CDCL) SAT Solvers

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

CP 2013 – p. 4



Barcelogic - Tech. Univ. Catalonia (UPC)

DPLL (or CDCL) SAT Solvers

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form A||F (see [NOT], JACM’06):

Assignment A : Clause set F :

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒

CP 2013 – p. 4



Barcelogic - Tech. Univ. Catalonia (UPC)

DPLL (or CDCL) SAT Solvers

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form A||F (see [NOT], JACM’06):

Assignment A : Clause set F :

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)

CP 2013 – p. 4



Barcelogic - Tech. Univ. Catalonia (UPC)

DPLL (or CDCL) SAT Solvers

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form A||F (see [NOT], JACM’06):

Assignment A : Clause set F :

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)

CP 2013 – p. 4



Barcelogic - Tech. Univ. Catalonia (UPC)

DPLL (or CDCL) SAT Solvers

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form A||F (see [NOT], JACM’06):

Assignment A : Clause set F :

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)

CP 2013 – p. 4



Barcelogic - Tech. Univ. Catalonia (UPC)

DPLL (or CDCL) SAT Solvers

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form A||F (see [NOT], JACM’06):

Assignment A : Clause set F :

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)

CP 2013 – p. 4



Barcelogic - Tech. Univ. Catalonia (UPC)

DPLL (or CDCL) SAT Solvers

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form A||F (see [NOT], JACM’06):

Assignment A : Clause set F :

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)

CP 2013 – p. 4



Barcelogic - Tech. Univ. Catalonia (UPC)

DPLL (or CDCL) SAT Solvers

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form A||F (see [NOT], JACM’06):

Assignment A : Clause set F :

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 5 6 || 1∨2, 3∨4, 5∨6, 6∨5∨2

CP 2013 – p. 4



Barcelogic - Tech. Univ. Catalonia (UPC)

DPLL (or CDCL) SAT Solvers

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form A||F (see [NOT], JACM’06):

Assignment A : Clause set F :

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 5 6 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Backtrack)

CP 2013 – p. 4



Barcelogic - Tech. Univ. Catalonia (UPC)

DPLL (or CDCL) SAT Solvers

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form A||F (see [NOT], JACM’06):

Assignment A : Clause set F :

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 5 6 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Backtrack)
1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2

CP 2013 – p. 4



Barcelogic - Tech. Univ. Catalonia (UPC)

DPLL (or CDCL) SAT Solvers

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form A||F (see [NOT], JACM’06):

Assignment A : Clause set F :

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 5 6 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Backtrack)
1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 model found!

CP 2013 – p. 4



Barcelogic - Tech. Univ. Catalonia (UPC)

DPLL (or CDCL) SAT Solvers

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form A||F (see [NOT], JACM’06):

Assignment A : Clause set F :

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (UnitPropagate)
1 2 3 4 5 6 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Backtrack)
1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 model found!

More rules: Backjump, Learn, Forget, Restart [M-S,S,M,...]!

CP 2013 – p. 4



Barcelogic - Tech. Univ. Catalonia (UPC)

Backtrack vs. Backjump

Same example as before. Remember: Backtrack gave 1 2 3 4 5.

But: decision level 3 4 is irrelevant for the conflict 6∨5∨2:

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
...

...
...

1 2 3 4 5 6 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Backjump)

CP 2013 – p. 5



Barcelogic - Tech. Univ. Catalonia (UPC)

Backtrack vs. Backjump

Same example as before. Remember: Backtrack gave 1 2 3 4 5.

But: decision level 3 4 is irrelevant for the conflict 6∨5∨2:

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
...

...
...

1 2 3 4 5 6 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Backjump)
1 2 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ . . .

CP 2013 – p. 5



Barcelogic - Tech. Univ. Catalonia (UPC)

Backtrack vs. Backjump

Same example as before. Remember: Backtrack gave 1 2 3 4 5.

But: decision level 3 4 is irrelevant for the conflict 6∨5∨2:

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Decide)
...

...
...

1 2 3 4 5 6 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ (Backjump)
1 2 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 ⇒ . . .

Backjump =

1. Conflict Analysis: compute backjump clause C ∨ l (here, 2∨5)

that is a logical consequence of F: can Learn it!

that reveals a unit propagation of l at earlier decision
level d (i.e., where its part C is false)

2. Return to decision level d and do the propagation.
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CDCL Solvers

UnitPropagate has priority over Decide.

For Decide, select literal involved in many, recent conflicts
(implemented, e.g., as VSIDS, [Chaff 2001]).

When a conflict is found, it is analyzed [M-SS 1999]:
– The derived clause is Learned.
– Backtrack is replaced by Backjump.

Periodically, the solver Restarts [Gomes et al 1998].

Also periodically, Forget non-active learned clauses [GN 2002].
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Encoding a constraint for SAT

Example: Cumulative resource constraints [Schutt Et al 2009 CP]:

A number of tasks {1, 2, · · · , n} must be done.

Tasks require some (limited) resources.

Variable ai,t means “task i is active at time t“

Cardinality Constraint:
at every timepoint t, no more active tasks than machines:

a1,t + a2,t + · · ·+ an,t 6 20

Naive (direct) encoding: ( n21) clauses of the form:

x1 ∨ . . . ∨ x21
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Encode it or build it in? (see next talk!)

“Build it in” = “Sat Modulo Theories” or “Lazy Clause Generation”:

Example: building in a cardinality constraint xi + · · ·+ xn 6 K

A propagator watches it

Each time the propagator detects K true variables in

{xi, . . . xn}, it can propagate the remaining ones to false

To explain a propagation: clause of the form
x1 ∧ . . . ∧ xK → y or equivalently x1 ∨ . . . ∨ xK ∨ y

Explanations are needed at least for conflict analysis

But someteimes it is useful to Learn them

Bad situation: end up Learning full (naive) (nK) encoding:
better to use a compact one with auxiliary variables

Encoding is many times better, especially for simpler constraints,
such as Cardinality ones (see next talk).

CP 2013 – p. 8



Barcelogic - Tech. Univ. Catalonia (UPC)

What’s a good encoding for an instance?

“Best encoding” = for this SAT solver on this instance.

But some criteria are usually desirable (for any constraint):

1. the encoding is correct and complete

2. UnitPropagate should preserve generalized arc consistency

3. small number of clauses needed

4. small number of auxiliary variables needed

Here, criteria 1 and 2 will always hold.

But is 3 more important or 4? Depends on solver and instance!

Therefore here we define a single encoding (a much more compact
one) that really optimizes wrt. a cost function λ · #vars+ #clauses,
where λ is decided by the user.
(can in fact optimize wrt. any efficiently computable function).
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Our encoding

[miniSAT+] Sorting network, O(n log2 n) clauses and aux vars

to sort (x1 . . . xn) into (y1 . . . yn).

To express xi + · · ·+ xn 6 K, add unit clause yk+1.

For . . . > K, add yk. For =, add both.

[Asin et al 2011] onle need (y1 . . . yk): other recursive approach

usingO(n log2 K) clauses and aux vars.
Large improvement since frequently n ≫ K.

This paper:

For small inputs, the naive direct approach is frequently better.

For large inputs, we should use the recursive approach.

Idea: Use recursive until small enough for direct.

Dynamic programming for optimality wrt. λ · #vars+ #clauses
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Our encoding (II)

We first remove the power-of-two restriction of our
Cardinality networks of [Asin et al 2011].
This already has a significant impact (see below).

The work done at encoding time (dynamic programming) is
negligible wrt. runtime.

Some recursive cases not split into halves, but differently!

Experiments:

We first compare wrt. number of variables and clauses, only
with [Asin et al 2011]: known to be in general better than other
previous approaches

For SAT solver runtime (Lingeling, [Biere]), we also compare
Adder [ES 06], BDD [BBR 06], and with our SMT approach.
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Experimental Results (Variables)

For 1 ≤ K ≤ 50 and n = 100 (this is representative):

Recursive, power-of-two size [Asin etal 2011]
Recursive, arbitrary size
Mixed, λ = 0.5
Mixed, λ = 5
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Experimental Results (Clauses)

For 1 ≤ K ≤ 50 and n = 100 (this is representative):

Recursive, power-of-two size [Asin etal 2011]
Recursive, arbitrary size
Mixed, λ = 0.5
Mixed, λ = 5

K
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10 20 40

2000
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Experimental Results (SAT Solving times)

MSU4 Suite: 6496 instances taking >5s (see paper for other suites).
Lingeling, TO 600s.

# insts. w/ Speed-up of Mixed ≈ # insts. w/ Slow-down of Mixed

Speed-up factor: Slow-down factor:

∞ >4 >2 >1.5 total total >1.5 >2 >4 ∞

Power-of-two CN 43 732 2957 1278 5010 1438 48 1 23 13 11

Arbitrary-sized CN 10 149 544 726 1429 4835 232 3 106 43 80

Adder 985 1207 1038 1250 4480 1927 89 0 13 36 40

BDD 187 1139 1795 1292 4413 2002 81 4 10 31 36

SMT 1143 323 102 53 1621 3184 1691 0 1417 211 63

What does this mean? Some examples:
– in 187 instances Mixed did not time out but BDD did
– in 1139 instances Mixed was more than 4 times faster than BDD
– in 36 instances Mixed timed out but BDD did not
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Concluding remarks

This kind of pragmatic work has a big impact in practice
(Barcelogic.com)

Can do a lot of work at encoding time!

Divide and Conquer: even more expensive search at encoding time
could pay off to find the best encoding for a given constraint

Pseudo-Boolean constraints: a1x1 + · · ·+ anxn ≤ K:

Similar ideas mixing direct encodings and recursive ones

Explore shared encoding of several constraints together

Build database of encodings for certain frequent constraints?

Thank you!
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