Constraint Based Computation of Periodic Orbits of Chaotic Dynamical Systems

Alexandre Goldsztejn1 \quad Laurent Granvilliers2 \quad Christophe Jermann2

1CNRS, University of Nantes
Nantes, France
alexandre.goldsztejn@univ-nantes.fr

2University of Nantes
Nantes, France
Laurent.Granvilliers@univ-nantes.fr
Dynamical system: State evolves with time with deterministic rule
Before: Complex dynamics come from complex dynamical systems
Chaos theory: Very simple systems can be chaotic!
Chaos Is Everywhere

- Dynamical system: State evolves with time with deterministic rule
- Before: Complex dynamics come from complex dynamical systems
- Chaos theory: Very simple systems can be chaotic!

\[x_{k+1} = f(x_k) \]: Discrete time, continuous state

\[(0, 0, 1, 0, \ldots) \xrightarrow{\sigma} (0, 1, 0, \ldots)\]

Discrete time, discrete state (symbolic dynamics)
History (subjective and non exhaustive)

- Late 19th century (in France :-)
 - Jacques Hadamar (symbolic dynamics on hyperbolic billards)
 - Henri Poincaré (chaos in the three-body problem, Poincaré maps)
History *(subjective and non exhaustive)*

- **Late 19th century** (in France :-)
 - Jacques Hadamar (symbolic dynamics on hyperbolic billards)
 - Henri Poincaré (chaos in the three-body problem, Poincaré maps)
- **Mid 20th century**
 - Edward Lorentz (Lorenz system attractor)
 - Stephen Smale (Smale’s horseshoe)
 - James A. Yorke (period three theorem)
 - Hyperbolic dynamics, symbolic dynamics, ergodic theory, etc.
History *(subjective and non exhaustive)*

- **Late 19th century (in France :-)**
 - Jacques Hadamar (symbolic dynamics on hyperbolic billards)
 - Henri Poincaré (chaos in the three-body problem, Poincaré maps)

- **Mid 20th century**
 - Edward Lorentz (Lorenz system attractor)
 - Stephen Smale (Smale’s horseshoe)
 - James A. Yorke (period three theorem)
 - Hyperbolic dynamics, symbolic dynamics, ergodic theory, etc.

- **Modern analysis**

ODE \[\rightarrow\] Poincaré map
Discrete time & continuous state \[\rightarrow\] Markov partition
Symbolic dynamics on discrete time & discrete state
Chaos in Continuous and Discrete Time Dynamical Systems

History *(subjective and non exhaustive)*

- Late 19th century (in France :-)
 - Jacques Hadamard (symbolic dynamics on hyperbolic billiards)
 - Henri Poincaré (chaos in the three-body problem, Poincaré maps)
- Mid 20th century
 - Edward Lorenz (Lorenz system attractor)
 - Stephen Smale (Smale’s horseshoe)
 - James A. Yorke (period three theorem)
 - Hyperbolic dynamics, symbolic dynamics, ergodic theory, etc.
- Modern analysis

\[\text{ODE} \quad \longrightarrow \quad \text{Discrete time & continuous state} \quad \longrightarrow \quad \text{Markov partition} \]

\[\text{Symbolic dynamics on discrete time & discrete state} \]

Discrete Time Dynamical Systems

- \(X \subseteq \mathbb{R}^n \) and \(F : X \to X \)
- Forward orbit of \(x \in X \):
 \((x, f(x), f(f(x)), \ldots) = (f^k(x))_{k \in \mathbb{N}}\)

\((\text{Hénon map})\)
Chaos in Continuous and Discrete Time Dynamical Systems

History (*subjective and non exhaustive*)

- **Late 19th century (in France :-)**
 - Jacques Hadamar (symbolic dynamics on hyperbolic billards)
 - Henri Poincaré (chaos in the three-body problem, Poincaré maps)

- **Mid 20th century**
 - Edward Lorentz (Lorenz system attractor)
 - Stephen Smale (Smale’s horseshoe)
 - James A. Yorke (period three theorem)
 - Hyperbolic dynamics, symbolic dynamics, ergodic theory, etc.

- **Modern analysis**

 \[\text{ODE} \quad \xrightarrow{\text{Poincaré map}} \quad \text{Discrete time & continuous state} \quad \xrightarrow{\text{Markov partition}} \quad \text{Symbolic dynamics on discrete time & discrete state} \]

Discrete Time Dynamical Systems

- \(X \subseteq \mathbb{R}^n \) and \(F : X \rightarrow X \)
- Forward orbit of \(x \in X \):
 \[(x, f(x), f(f(x)), \ldots) = (f^k(x))_{k \in \mathbb{N}} \]

(Hénon map)
Chaos in Continuous and Discrete Time Dynamical Systems

History (*subjective and non exhaustive*)

- **Late 19th century (in France :-)**
 - Jacques Hadamar (symbolic dynamics on hyperbolic billards)
 - Henri Poincaré (chaos in the three-body problem, Poincaré maps)

- **Mid 20th century**
 - Edward Lorentz (Lorenz system attractor)
 - Stephen Smale (Smale’s horseshoe)
 - James A. Yorke (period three theorem)
 - Hyperbolic dynamics, symbolic dynamics, ergodic theory, etc.

- **Modern analysis**

\[
\begin{align*}
\text{ODE} & \quad \rightarrow \quad \text{Discrete time & continuous state} \quad \rightarrow \quad \text{Symbolic dynamics on discrete time & discrete state}
\end{align*}
\]

Discrete Time Dynamical Systems

- \(X \subseteq \mathbb{R}^n\) and \(F : X \rightarrow X\)

- Forward orbit of \(x \in X\):
 \((x, f(x), f(f(x)), \ldots) = (f^k(x))_{k \in \mathbb{N}}\)

(Hénon map)
Chaos in Continuous and Discrete Time Dynamical Systems

History *(subjective and non exhaustive)*

- **Late 19th century (in France :-)**
 - Jacques Hadamard (symbolic dynamics on hyperbolic billiards)
 - Henri Poincaré (chaos in the three-body problem, Poincaré maps)

- **Mid 20th century**
 - Edward Lorentz (Lorenz system attractor)
 - Stephen Smale (Smale’s horseshoe)
 - James A. Yorke (period three theorem)
 - Hyperbolic dynamics, symbolic dynamics, ergodic theory, etc.

- **Modern analysis**

![Diagram](image)

Discrete Time Dynamical Systems

- \(X \subseteq \mathbb{R}^n \) and \(F : X \rightarrow X \)
- Forward orbit of \(x \in X \):
 \[
 (x, f(x), f(f(x)), \ldots) = (f^k(x))_{k \in \mathbb{N}}
 \]

(Hénon map)
Chaos in Continuous and Discrete Time Dynamical Systems

History (subjective and non exhaustive)

- Late 19th century (in France :-)
 - Jacques Hadamard (symbolic dynamics on hyperbolic billards)
 - Henri Poincaré (chaos in the three-body problem, Poincaré maps)

- Mid 20th century
 - Edward Lorentz (Lorenz system attractor)
 - Stephen Smale (Smale’s horseshoe)
 - James A. Yorke (period three theorem)
 - Hyperbolic dynamics, symbolic dynamics, ergodic theory, etc.

- Modern analysis

\[
\text{ODE} \xrightarrow{\text{Poincaré map}} \text{Discrete time & continuous state} \xrightarrow{\text{Markov partition}} \text{Symbolic dynamics on discrete time & discrete state}
\]

Discrete Time Dynamical Systems

- \(X \subseteq \mathbb{R}^n \) and \(F : X \to X \)

- Forward orbit of \(x \in X \): \((x, f(x), f(f(x)), \ldots) = (f^k(x))_{k \in \mathbb{N}}\)

(Hénon map)
Definition of Chaos

- Exponential sensitivity to initial conditions: Wrong common sense
 ⇒ E.g. \(f : \mathbb{R} \to \mathbb{R}, f(x) = 2x \) (exponentially sensitive, but non chaotic)
Hyperbolic Chaos and Periodic Orbits

Definition of Chaos

- Exponential sensitivity to initial conditions: Wrong common sense
 ⇒ E.g. $f : \mathbb{R} \rightarrow \mathbb{R}$, $f(x) = 2x$ (exponentially sensitive, but non chaotic)
- Closer to true: X is bounded, and f exponentially sensitive to initial conditions
 ⇒ E.g. $f : [0, 1] \rightarrow [0, 1]$, $f(x) = 2x \mod 1$ (the modulo 2 map)
- Both expanding and contracting \Rightarrow hyperbolic (roughly speaking)
Hyperbolic Chaos and Periodic Orbits

Definition of Chaos

- Exponential sensitivity to initial conditions: Wrong common sense
 \[\Rightarrow \text{E.g. } f : \mathbb{R} \rightarrow \mathbb{R}, f(x) = 2x \text{ (exponentially sensitive, but non chaotic)} \]
- Closer to true: \(X \) is bounded, and \(f \) exponentially sensitive to initial conditions
 \[\Rightarrow \text{E.g. } f : [0, 1] \rightarrow [0, 1], f(x) = 2x \mod 1 \text{ (the modulo 2 map)} \]
- Both expanding and contracting \(\implies \text{hyperbolic} \) (roughly speaking)
- Most common definition of chaos:
 \[f \text{ chaotic} \iff h_{\text{top}}(f) > 0 \text{ (i.e. strictly positive topological entropy\(^a\)} \]

\(^a\)The topological entropy is a number that quantifies the exponential divergence
Definition of Chaos

- Exponential sensitivity to initial conditions: Wrong common sense
 - E.g. \(f : \mathbb{R} \to \mathbb{R}, f(x) = 2x \) (exponentially sensitive, but non chaotic)
- Closer to true: \(X \) is bounded, and \(f \) exponentially sensitive to initial conditions
 - E.g. \(f : [0, 1] \to [0, 1], f(x) = 2x \mod 1 \) (the modulo 2 map)
- Both expanding and contracting \(\implies \) hyperbolic (roughly speaking)
- Most common definition of chaos:
 \[
 f \text{ chaotic } \iff h_{\text{top}}(f) > 0 \text{ (i.e. strictly positive topological entropy)}^{a}
 \]

\(^{a}\)The topological entropy is a number that quantifies the exponential divergence

Periodic Orbits

- \((f^k(x))_{k \in \mathbb{Z}} \) is \(n \)-periodic \(\iff f^{k+n}(x) = f^k(x) \iff x = f^n(x) \)
- \(P_n(f) = \) number of \(n \)-periodic orbits
Definition of Chaos

- Exponential sensitivity to initial conditions: Wrong common sense
 \[f : \mathbb{R} \to \mathbb{R}, \quad f(x) = 2x \] (exponentially sensitive, but non chaotic)
- Closer to true: \(X \) is bounded, and \(f \) exponentially sensitive to initial conditions
 \[f : [0, 1] \to [0, 1], \quad f(x) = 2x \mod 1 \] (the modulo 2 map)
- Both **expanding** and **contracting** \(\implies \) **hyperbolic** (roughly speaking)
- Most common definition of chaos:
 \[f \text{ chaotic } \iff h_{\text{top}}(f) > 0 \] (i.e. strictly positive topological entropy\(^a\))

\(^a\)The topological entropy is a number that quantifies the exponential divergence

Periodic Orbits

- \((f^k(x))_{k \in \mathbb{Z}}\) is \(n \)-periodic \(\iff f^{k+n}(x) = f^k(x) \iff x = f^n(x)\)
- \(P_n(f) = \) number of \(n \)-periodic orbits
- Key role in hyperbolic chaotic systems: \(P_n(f) \approx O(e^{n h_{\text{top}}(f)}) \)
Hyperbolic Chaos and Periodic Orbits

Definition of Chaos

- **Exponential sensitivity to initial conditions**: Wrong common sense
 - E.g. $f : \mathbb{R} \rightarrow \mathbb{R}$, $f(x) = 2x$ (exponentially sensitive, but non chaotic)
- Closer to true: X is bounded, and f exponentially sensitive to initial conditions
 - E.g. $f : [0, 1] \rightarrow [0, 1]$, $f(x) = 2x \mod 1$ (the modulo 2 map)
- Both *expanding* and *contracting* \implies hyperbolic (roughly speaking)
- Most common definition of chaos:
 \[
 f \text{ chaotic} \iff h_{\text{top}}(f) > 0 \quad \text{(i.e. strictly positive topological entropy)}
 \]

\[a\]
The topological entropy is a number that quantifies the exponential divergence

Periodic Orbits

- $(f^k(x))_{k \in \mathbb{Z}}$ is n-periodic $\iff f^{k+n}(x) = f^k(x) \iff x = f^n(x)$
- $P_n(f) = \text{number of } n\text{-periodic orbits}$
- Key role in hyperbolic chaotic systems: $P_n(f) \approx O(e^{nh_{\text{top}}(f)})$

Counting periodic orbits

\[
\text{Counting periodic orbits} \implies \text{estimation of } h_{\text{top}}(f) \approx \frac{\log P_n(f)}{n}
\]
The Contribution

- Z. Galias (2001): Dedicated algorithm based on bisection and interval Newton for rigorously computing (hence counting) periodic orbits
- Numerical constraint programming:
 - Easier modeling
 - Tunable search and resolution strategies
 - Asymptotic performance gain w.r.t. Galias (although not critical, the resolution process is intrinsically exponential)
 - Available solvers
Outline

1. Topological Entropy: An Introducing Example
2. Periodic Orbits as CSPs
3. Experiments
4. Conclusion
The Modulo 2 Map (also called modulo 2 map)

Map Definition

- $X = [0, 1]$ and $f(x) = 2x \mod 1$
- Most simple chaotic dynamical system
- Orbit of $x_0 = 0.1$
The Modulo 2 Map (also called modulo 2 map)

Map Definition

- $X = [0, 1]$ and $f(x) = 2x \mod 1$
- Most simple chaotic dynamical system
- Orbit of $x_0 = 0.1$
 - $x_1 = 0.2$

\Rightarrow Converged to a periodic orbit

Symbolic Representation

- $0.b_1b_2b_3\cdots$ → binary representation of $x \in X$
- $f(0.b_1b_2b_3\cdots) = 0.b_2b_3\cdots \Rightarrow f$ is the shift map on sequences of two symbols
 - $(10) = 0.0001100110011\cdots$
 - $(2) = 0.001100110011\cdots$ (periodic)

- More generally:
 - $x \in \mathbb{Q} \iff$ binary representation periodic after some fixed index
 - $x \in \mathbb{Q} \Rightarrow (f^k(x))_k \in \mathbb{N}$ converge to a periodic orbit after a finite number of steps
The Modulo 2 Map (also called modulo 2 map)

Map Definition

- $X = [0, 1]$ and $f(x) = 2x \mod 1$
- Most simple chaotic dynamical system
- Orbit of $x_0 = 0.1$
 - $x_1 = 0.2$
 - $x_2 = 0.4$

The figure illustrates the modulo 2 map with a graph showing the orbit of $x_0 = 0.1$.
The Modulo 2 Map (also called modulo 2 map)

Map Definition

- \(X = [0, 1] \) and \(f(x) = 2x \mod 1 \)
- Most simple chaotic dynamical system
- Orbit of \(x_0 = 0.1 \)
 - \(x_1 = 0.2 \)
 - \(x_2 = 0.4 \)
 - \(x_3 = 0.8 \)

Goldsztejn, Granvilliers and Jermann

Periodic Orbits of Chaotic Dynamical Systems

Uppsala (Sweden), Sept. 16-20, 2013
The Modulo 2 Map (also called modulo 2 map)

Map Definition

- $X = [0, 1]$ and $f(x) = 2x \mod 1$
- Most simple chaotic dynamical system
- Orbit of $x_0 = 0.1$
 - $x_1 = 0.2$
 - $x_2 = 0.4$
 - $x_3 = 0.8$
 - $x_4 = 0.6$

\Rightarrow Converged to a periodic orbit

Symbolic Representation

$0.b_1b_2b_3\cdots \rightarrow$ binary representation of $x \in X$

$f(0.b_1b_2b_3\cdots) = 0.b_2b_3\cdots \Rightarrow f$ is the shift map on sequences of two symbols

- $0.1^{(10)} = 0.0001100110011\cdots$
- $f(0.1^{(10)}) = 0.001100110011\cdots$ (periodic)

More generally:

- $x \in \mathbb{Q} \Leftrightarrow$ binary representation periodic after some fixed index
- $x \in \mathbb{Q} \Rightarrow (f^k(x))_k \in \mathbb{N}$ converge to a periodic orbit after a finite number of steps
The Modulo 2 Map (also called modulo 2 map)

Map Definition

- $X = [0, 1]$ and $f(x) = 2x \mod 1$
- Most simple chaotic dynamical system
- Orbit of $x_0 = 0.1$
 - $x_1 = 0.2$
 - $x_2 = 0.4$
 - $x_3 = 0.8$
 - $x_4 = 0.6$
 - $x_5 = 0.2$
 - Converged to a periodic orbit

Goldsztejn, Granvilliers and Jermann
Periodic Orbits of Chaotic Dynamical Systems
Uppsala (Sweden), Sept. 16-20, 2013
The Modulo 2 Map (also called modulo 2 map)

Map Definition

- $X = [0, 1]$ and $f(x) = 2x \mod 1$
- Most simple chaotic dynamical system
- Orbit of $x_0 = 0.1$
 - $x_1 = 0.2$
 - $x_2 = 0.4$
 - $x_3 = 0.8$
 - $x_4 = 0.6$
 - $x_5 = 0.2$
 - Converged to a periodic orbit

Symbolic Representation

- $0.b_1b_2b_3 \cdots \rightarrow$ binary representation of $x \in X$
- $f(0.b_1b_2b_3 \cdots) = 0.b_2b_3 \cdots \Rightarrow f$ is the shift map on sequences of two symbols
- $0.1_{(10)} = 0.0001100110011 \cdots_{(2)}$ and $f(0.1_{(10)}) = 0.001100110011 \cdots_{(2)}$ (periodic)
The Modulo 2 Map (also called modulo 2 map)

Map Definition

- $X = [0, 1]$ and $f(x) = 2x \mod 1$
- Most simple chaotic dynamical system
- Orbit of $x_0 = 0.1$
 - $x_1 = 0.2$
 - $x_2 = 0.4$
 - $x_3 = 0.8$
 - $x_4 = 0.6$
 - $x_5 = 0.2$
 - Converged to a periodic orbit

Symbolic Representation

- $0.b_1 b_2 b_3 \cdots \rightarrow$ binary representation of $x \in X$
- $f(0.b_1 b_2 b_3 \cdots) = 0.b_2 b_3 \cdots \Rightarrow f$ is the shift map on sequences of two symbols
- $0.1_{(10)} = 0.0001100110011 \cdots_{(2)}$ and $f(0.1_{(10)}) = 0.001100110011 \cdots_{(2)}$ (periodic)
- More generally:
 - $x \in \mathbb{Q} \iff$ binary representation periodic after some fixed index
 - $x \in \mathbb{Q} \iff (f^k(x))_{k \in \mathbb{N}}$ converge to a periodic orbit after a finite number of steps
The Modulo 2 Map: Sensitivity to Initial Conditions

Exponential Sensitivity

- Long term simulation impossible
 - Finite precision computation (e.g. IEEE double): $x = b_1 b_2 \cdots b_{64} 000 \cdots$
 - Converge to 0 after finite number of iterations
- Exponential divergence
 - $x = b_1 b_2 \cdots$ and $y = b_1 b_2 \cdots b_{K-1} |1 - b_K| c_{K+1} \cdots \Rightarrow d(x, y) \leq \frac{1}{2^K}$
 - $f^K(x) = b_K \cdots$ and $f^K(y) = |1 - b_K| \cdots \Rightarrow d(f^K(x), f^K(y)) \geq \frac{1}{2}$
The Modulo 2 Map: Sensitivity to Initial Conditions

Exponential Sensitivity

- **Long term simulation impossible**
 - Finite precision computation (e.g. IEEE double): \(x = b_1 b_2 \cdots b_{64} 000 \cdots \)
 - \(\Rightarrow \) Converge to 0 after finite number of iterations
- **Exponential divergence**
 - \(x = b_1 b_2 \cdots \) and \(y = b_1 b_2 \cdots b_{K-1} |1 - b_K| c_{K+1} \cdots \) \(\Rightarrow \) \(d(x, y) \leq \frac{1}{2^K} \)
 - \(f^K(x) = b_K \cdots \) and \(f^K(y) = |1 - b_K| \cdots \) \(\Rightarrow \) \(d(f^K(x), f^K(y)) \geq \frac{1}{2} \)

Topological Entropy

- \(s(n, \epsilon) \equiv \text{maximal cardinality of a set whose elements can be separated of } \epsilon \text{ by at most } n \text{ iterations of the map} \)
- \(s(n, \epsilon) \) grows exponentially with \(n \) \(\Rightarrow \) exponential divergence
- \(\Rightarrow \) \(s(\epsilon) := \limsup_{n \to \infty} \frac{\log s(n, \epsilon)}{n} > 0 \) \(\Rightarrow \) exponential divergence

\[
h_{\text{top}}(f) = \limsup_{\epsilon \to 0} s(\epsilon)
\]

- **Exponential divergence** \(\iff \) \(h_{\text{top}}(f) > 0 \) \(\text{def.} \) chaotical
Topological Entropy of the Modulo 2 Map

Lower Bound Through Periodic Orbits

- $E_n \subseteq [0, 1]$: Points whose orbit is n-periodic
- $\text{card} E_n = 2^n$
Lower Bound Through Periodic Orbits

- $E_n \subseteq [0, 1]$: Points whose orbit is n-periodic
- $\text{card} E_n = 2^n$
- $x \neq y \in E_n$ have one bit different \Rightarrow separated of 0.5 by at most n iteration of f
Lower Bound Through Periodic Orbits

- $E_n \subseteq [0, 1]$: Points whose orbit is n-periodic
- $\text{card } E_n = 2^n$
- $x \neq y \in E_n$ have one bit different \Rightarrow separated of 0.5 by at most n iteration of f
 $\Rightarrow s(n, 0.5) \geq 2^n$
 $\Rightarrow h_{\text{top}}(f) \geq \frac{\log 2^n}{n} = \log 2$ (in fact, $h_{\text{top}}(f) = \log 2$)
Topological Entropy of the Modulo 2 Map

Lower Bound Through Periodic Orbits

- $E_n \subseteq [0, 1]$: Points whose orbit is n-periodic
- $\text{card } E_n = 2^n$
- $x \neq y \in E_n$ have one bit different \Rightarrow separated of 0.5 by at most n iteration of f
 $\Rightarrow s(n, 0.5) \geq 2^n$
 $\Rightarrow h_{\text{top}}(f) \geq \frac{\log 2^n}{n} = \log 2$ (in fact, $h_{\text{top}}(f) = \log 2$)

Simple Map, Amazing Complexity

- $P_n = 2^n$ (think of $n = 200$)
- Infinitely many periodic orbits, which are interleaved in a complex structure (exponential divergence)
- Non-periodic orbits seem random (e.g. π)
Outline

1. Topological Entropy: An Introducing Example
2. Periodic Orbits as CSPs
 - CSP Models for Periodic Orbits Computation
 - CSP Resolution: Search and Resolution Strategies
3. Experiments
4. Conclusion

Constraint Programming

Strengths:
- Separation of modeling and solving
- Many strategies for searching and filtering that can be tuned
Outline

1. Topological Entropy: An Introducing Example
2. Periodic Orbits as CSPs
 - CSP Models for Periodic Orbits Computation
 - CSP Resolution: Search and Resolution Strategies
3. Experiments
4. Conclusion
Folded Model

- d variables: $x = (x_1, \ldots, x_d) \in X \subseteq \mathbb{R}^d$
- d constraints: $f^n(x) = x$ (vectorial equality \Rightarrow d equality constraints)
Folded Model

- d variables: $x = (x_1, \ldots, x_d) \in X \subseteq \mathbb{R}^d$
- d constraints: $f^n(x) = x$ (vectorial equality \Rightarrow d equality constraints)
- Advantage: Number of variables do not depend on n
- Disadvantage: Constraints get more and more complex as n increases
Folded Model

- d variables: $x = (x_1, \ldots, x_d) \in X \subseteq \mathbb{R}^d$
- d constraints: $f^n(x) = x$ (vectorial equality \Rightarrow d equality constraints)

Advantage: Number of variables do not depend on n

Disadvantage: Constraints get more and more complex as n increases

\Rightarrow Useless except for very simple systems (Galias, and confirmed by our experiments)
CSP Models for \(n \)-Periodic Orbits Computation (1/2)

Folded Model

- \(d \) variables: \(x = (x_1, \ldots, x_d) \in X \subseteq \mathbb{R}^d \)
- \(d \) constraints: \(f^n(x) = x \) (vectorial equality \(\Rightarrow \) \(d \) equality constraints)
- Advantage: Number of variables do not depend on \(n \)
- Disadvantage: Constraints get more and more complex as \(n \) increases
 \(\Rightarrow \) Useless except for very simple systems (Galias, and confirmed by our experiments)

Unfolded (functional) Model

- \(d \times n \) variables: \(x_k = (x_{k1}, \ldots, x_{kd}) \in X \subseteq \mathbb{R}^d \), \(k \in \{0, \ldots, n-1\} \)
- \(d \times n \) constraints:
 - \(f(x_k) = x_{k+1}, k \in \{0, \ldots, n-2\} \) (links between states at different times)
 - \(f(x_{n-1}) = x_0 \) (periodic orbit)
Folded Model

- **d variables:** $x = (x_1, \ldots, x_d) \in X \subseteq \mathbb{R}^d$
- **d constraints:** $f^n(x) = x$ (vectorial equality \Rightarrow d equality constraints)
- Advantage: Number of variables do not depend on n
- Disadvantage: Constraints get more and more complex as n increases
 \Rightarrow Useless except for very simple systems (Galias, and confirmed by our experiments)

Unfolded (functional) Model

- **$d \times n$ variables:** $x_k = (x_{k1}, \ldots, x_{kd}) \in X \subseteq \mathbb{R}^d$, $k \in \{0, \ldots, n-1\}$
- **$d \times n$ constraints:**
 - $f(x_k) = x_{k+1}$, $k \in \{0, \ldots, n-2\}$ (links between states at different times)
 - $f(x_{n-1}) = x_0$ (periodic orbit)
- Advantage: Constraints remain very simple, independently of n
- Disadvantage: Number of variables increase linearly with n (search space increase exponentially)
Folded Model

- **d variables**: $x = (x_1, \ldots, x_d) \in X \subset \mathbb{R}^d$
- **d constraints**: $f^n(x) = x$ (vectorial equality \Rightarrow d equality constraints)
- Advantage: Number of variables do not depend on n
- Disadvantage: Constraints get more and more complex as n increases

\Rightarrow Useless except for very simple systems (Galias, and confirmed by our experiments)

Unfolded (functional) Model

- **$d \times n$ variables**: $x_k = (x_{k1}, \ldots, x_{kd}) \in X \subset \mathbb{R}^d$, $k \in \{0, \ldots, n-1\}$
- **$d \times n$ constraints**:
 - $f(x_k) = x_{k+1}$, $k \in \{0, \ldots, n-2\}$ (links between states at different times)
 - $f(x_{n-1}) = x_0$ (periodic orbit)
- Advantage: Constraints remain very simple, independently of n
- Disadvantage: Number of variables increase linearly with n (search space increase exponentially)

\Rightarrow Much better than folded model (Galias, and confirmed by our experiments)
Sometimes: $f(x) = y \iff g(x, y) = 0$, where g is simpler.
Unfolded (relational) Model

- Sometimes: $f(x) = y \iff g(x, y) = 0$, where g is simpler
- $d \times n$ variables: $(x_{k1}, \ldots, x_{kd}) \in X \subseteq \mathbb{R}^d$, $k \in \{0, \ldots, n-1\}$
- $d \times n$ constraints:
 - $g(x_k, x_{k+1}) = 0$, $k \in \{0, \ldots, n-2\}$ (links between states at different times)
 - $g(x_{n-1}, x_0) = 0$ (periodic orbit)
Unfolded (relational) Model

- Sometimes: \(f(x) = y \iff g(x, y) = 0 \), where \(g \) is simpler
- \(d \times n \) variables: \((x_{k1}, \ldots, x_{kd}) \in X \subseteq \mathbb{R}^d, k \in \{0, \ldots, n-1\}\)
- \(d \times n \) constraints:
 - \(g(x_k, x_{k+1}) = 0, k \in \{0, \ldots, n-2\} \) (links between states at different times)
 - \(g(x_{n-1}, x_0) = 0 \) (periodic orbit)

Additional Constraints

- Periodic orbits have a cyclic symmetry \(\Rightarrow \) RLEX partial symmetry breaking\(^a\):
 \[x_{0,0} \leq x_{0,k}, k \in \{0, \ldots, n-1\} \]

\[\Rightarrow \] Critical importance for solving long period problems
- Non-wandering set a priori enclosure \(\Rightarrow \) reduce the search space
 - Difficult to tune preprocessing
 - Our experiments: Useless because of constraint propagation, which quickly infer the information

\(^a\) Although partial, complete in practice for this problem (verified a posteriori for correct counting)
Standard Algorithm

- Variable domains are continuous
- General algorithm:
 - Filtering (HC4-revise, BC3-revise, CID, Newton)
 - Branching (maxdom on all or some variables)
 - Post processing: Validation of existence/uniqueness and symmetry breaking

⇒ Compute and certify all solutions $\rightarrow P_n$
CSP Resolution: Search and Resolution Strategies

Standard Algorithm

- Variable domains are continuous
- General algorithm:
 - Filtering (HC4-revise, BC3-revise, CID, Newton)
 - Branching (maxdom on all or some variables)
 - Post processing: Validation of existence/uniqueness and symmetry breaking

\[\Rightarrow \text{Compute and certify all solutions } \rightarrow P_n \]

Post Processing Partial Symmetry Breaking Constraints

- RLEX is complete provided \(\text{card argmin}_{i \in \{1, n-1\}} x_{0,i} = 1 \)
- Numerically, no difference between
 - RLEX not complete and broken
 - RLEX complete, but close to not complete, and not broken (in this case, counting solutions is not sound)
- Need to check a posteriori that \(\overline{x}_{0,0} < x_{0,k}, k \in \{1, n-1\} \)
Unidimensional Maps: The Modulo 2 and Logistic Maps

\[
\begin{align*}
\quad P_n & \approx O(e^{0.69n}) \\
\quad t_{\blacksquare}(n) & \approx O(e^{0.74n}) \\
\quad t_{\triangle}(n) & \approx O(e^{0.73n}) \\
\quad t_{\triangleup}(n) & \approx O(e^{0.76n}) \\
\quad t_{\bullet}(n) & \approx O(e^{0.72n})
\end{align*}
\]

BC5 with \textit{maxdom} for all experiments; \quad \circ \equiv P_n; \quad \blacksquare \equiv \text{factorized logistic and modulo 2 unfolded models}; \quad \triangle \equiv \text{modulo 2 folded model}; \quad \triangleup \equiv \text{factorized logistic folded model}; \quad \bullet \equiv \text{non-factorized logistic unfolded model}.

Comments

- Log scale: Straight line \equiv\text{exponential (slope=exponential growth)}
- \(P_n\) shows the best asymptotic one can expect
- Asymptotic behavior can be read on small orbits problems
- Different models and tuning do not show drastic difference
The Hénon Map

\[t \approx O(e^{0.46n}) \]

Comments

- \(P_n \) shows the best asymptotic one can expect: \(t_o(n) \approx O(e^{0.46n}) \)
- Again, asymptotic behavior can be read on small orbits problems
- Different models and tuning now show drastic differences
- Unfolded model with CID(3)+maxdom: \(t_{\Box}(n) \approx O(e^{0.51n}) \)
- Galias: \(t_G(n) \approx O(e^{0.58n}) \) (timings not meaningful)
The Ikeda Map

Comments

- P_n shows the best asymptotic one can expect: $t_\circ(n) \approx O(e^{0.60n})$
- Again, asymptotic behavior can be read on small orbits problems
- Different models and tuning now show drastic differences
- Unfolded relational model with CID(9)+maxdom: $t_{\Box}(n) \approx O(e^{0.66n})$
Conclusion

Advantages of the CP Framework

- Flexible modeling and resolution strategies, tunable on easy instances
- Available solvers
- Asymptotic gain wrt Galias (although not critical wrt intrinsic exponential complexity)
Conclusion

Advantages of the CP Framework

- Flexible modeling and resolution strategies, tunable on easy instances
- Available solvers
- Asymptotic gain wrt Galias (although not critical wrt intrinsic exponential complexity)

Discussion wrt Galias

<table>
<thead>
<tr>
<th></th>
<th>Galias</th>
<th>CSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Splitting strategy</td>
<td>maxdom x_0</td>
<td>maxdom (better and robust)</td>
</tr>
<tr>
<td>NWP</td>
<td>critical</td>
<td>useless (local consistencies)</td>
</tr>
<tr>
<td>Formal map inverse</td>
<td>critical</td>
<td>not necessary (local consistencies)</td>
</tr>
</tbody>
</table>
Conclusion

Advantages of the CP Framework

- Flexible modeling and resolution strategies, tunable on easy instances
- Available solvers
- Asymptotic gain wrt Galias (although not critical wrt intrinsic exponential complexity)

Discussion wrt Galias

<table>
<thead>
<tr>
<th></th>
<th>Galias</th>
<th>CSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Splitting strategy</td>
<td>maxdom x_0</td>
<td>maxdom (better and robust)</td>
</tr>
<tr>
<td>NWP</td>
<td>critical</td>
<td>useless (local consistencies)</td>
</tr>
<tr>
<td>Formal map inverse</td>
<td>critical</td>
<td>not necessary (local consistencies)</td>
</tr>
</tbody>
</table>

Future Work

- Higher dimensional systems
- ODE using Poincaré maps
- Accurate topological entropy lower bound