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Fixed template CSPs

» Constraint language: I = (D; Ry, ..., Rm)
» a fixed domain with a list of relations
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Constraint Satisfaction Problems

Fixed template CSPs

» Constraint language: I = (D; Ry, ..., Rm)
» a fixed domain with a list of relations

» Usually D is finite. We will require the relation list to be
finite.
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Constraint Satisfaction Problems

Fixed template CSPs

» Constraint language: I = (D; Ry, ..., Rm)
» a fixed domain with a list of relations
» Instance of CSP(I):

» a finite set of variables V and
» a finite set of constraints €. Example constraint:
(v1,...,vk) € R, for some i

» Solution: an interpretation ¢ : V — D such that
(¢(v1),...,9(vk)) € R; for each constraint

Example
A directed graph I = (D; —), with — binary
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Constraint Satisfaction Problems

Polymorphism of I = (D; Ry, ..., Rp)
A function f : D" — D preserving each R; pointwise:
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Constraint Satisfaction Problems

Polymorphism of I = (D; Ry, ..., Rp)
A function f : D" — D preserving each R; pointwise:
dh 1 di 2 din f(di1,...,d1n)
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A function f : D" — D preserving each R; pointwise:
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Polymorphism of I = (D; Ry, ..., Rp)
A function f : D" — D preserving each R; pointwise:
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Constraint Satisfaction Problems

Polymorphism of I' = (D; Ry, ..., Rm)
A function f : D" — D preserving each R; pointwise:

c/1I dgf d,,I R If(d1,...,d,,)

Cile ©C f(c1,...,¢n)
Example

» “automorphism” = “bijective unary polymorphism”
» “endomorphism” = “unary polymorphism”
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Constraint Satisfaction Problems

Polymorphisms and complexity

» Polymorphisms determine computational complexity
» Jeavons, Cohen, Gyssens (1997)
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Polymorphisms and complexity

» Polymorphisms determine computational complexity
» Jeavons, Cohen, Gyssens (1997)

» Complexity theoretic issues are determined by the
“equational theory” of the polymorphisms.

» Bulatov, Jeavons, Krokhin (2001)
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Constraint Satisfaction Problems

Polymorphisms and complexity

» Polymorphisms determine computational complexity
» Jeavons, Cohen, Gyssens (1997)
» Complexity theoretic issues are determined by the
“equational theory” of the polymorphisms.
» Bulatov, Jeavons, Krokhin (2001)

Problem Polymorphism Algebra
0 1
HORNSAT 0/0 O
110 1
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The Dichotomy Conjecture

Feder & Vardi 1994
Conjecture: For all I, CSP(I') is either in P or is NP-complete
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» Polymorphisms used to facilitate algorithmic solution

» Furthermoreover, CSP(I) is p-time equivalent to one over
a digraph
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Constraint Satisfaction Problems

The Dichotomy Conjecture

Feder & Vardi 1994
Conjecture: For all I, CSP(I') is either in P or is NP-complete

» Polymorphisms used to facilitate algorithmic solution

» Furthermoreover, CSP(I) is p-time equivalent to one over
a digraph

Algebraic conjectures

» Algebraic dichotomy conjecture: a characterisation of
tractable CSPs

» Bulatov, Jeavons, Krokhin

» conjectured/known polymorphism classifications of N1, 1,
and amenability to specific kinds of algorithms
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Main result

Main Result
Every CSP(I) is logspace equivalent to a CSP over a balanced
directed graph with (almost) the same polymorphism properties

» future investigations can be restricted to the special case
of digraphs with no loss of generality
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Main result
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The construction

(Above.) The digraph obtained by applying the construction to
the following two element cyclic digraph
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The construction

What can’t be done

» The landscape of list homomorphism problems over
digraphs is substantially restricted (Hell, Rafiey).

» “Logspace equivalent” cannot naturally be replaced by
“first order equivalent”, at least for balanced digraphs.
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The construction

What can’t be done
» The landscape of list homomorphism problems over
digraphs is substantially restricted (Hell, Rafiey).

» “Logspace equivalent” cannot naturally be replaced by
“first order equivalent”, at least for balanced digraphs.

Extensions

» The main result does neverthe-more-or-less apply to
infinite domain CSPs (with finitely many relations).

» Approximation CSPs? Counting CSPs? Surjective CSPs?
...CSPs?
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