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Open QBF

» Closed QBF: All variables quantified; answer is True or False.
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Open QBF: Contains free (unquantified) variables.

v

Goal: Find equivalent propositional formula.

» E.g., given dx. x A (yVz), return yV z.

v

Applications: symbolic model checking,
synthesis from formal spec, etc.



» Naive Algorithm

» Introduce sequents that generalize clauses for open QBF
(without ghost variables)

» Experimental results

» Ghost variables (for non-CNF): see paper.
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Naive Algorithm

» Notation: “ite(x, 1, ¢2)" is a formula with an if-then-else:

ite(r, d1,¢92) = (T A d1) V (-2 A ¢2)

» Recursively Shannon-expand on free variables:
® = ite(z, P[;—Trues Plo—False)

» Base case (no more free variables): Give to closed-QBF solver.
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7 }



Naive Algorithm

function solve(®P) {
if (P has no free variables)
return closed gbf_solve(®);
x := (a free variable in ®);
return ite(x, solve(®|z=True),
solve( ®|r=False)) ;
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Naive Algorithm

1.  function solve(®) {
2. f (P has no free variables)
3. return closed_gbf_solve(®d);
4. x := (a free variable in ®);
5. return ite(x, solve(®|z=True),
6. solve( ®|z=False)) ;
7. %

Builds OBDD if:

1. same branch order,
2. formula construction is memoized, and
3. ite(z, ¢, ¢) is simplified to ¢.



Naive Algorithm

» Naive Algorithm:
» Similar to DPLL in terms of branching.
» But lacks many optimizations that make DPLL fast:

» Non-chronological backtracking
» Clause learning

» Our open-QBF technique:
» Extend existing closed-QBF algorithm to allow free variables.
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Preliminaries

» Prenex Form: Qqz...Qnx,. ¢ where ¢ has no quantifiers.

v

In Vz.3y. ¢, we say that y is downstream of z.

» Jy occurs inside scope of V.

v

Free variables are upstream of all quantified variables.

v

Outermost: Not downstream of any unassigned variables.

» E.g.: Je1.Vug.¢ and assignment {(eq, True)}:
u9 is outermost.

v

Substitution: ®|r where 7 is a partial assignment.



Closed QBF as a Game

Existential variables are owned by Player .

v

v

Universal variables are owned by Player V.

v

Players assign variables in quantification order.

\4

The goal of Player 3 is to make ® be true.

v

The goal of Player V is to make ® be false.




Properties of Clauses and Cubes

» Motivate definition of sequents.

» Existential literals e ... e,, and universal literals uq ... ty,.

» Clause (e1 V...Vep V up V... Vuy) in CNF &4,
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Properties of Clauses and Cubes

» Motivate definition of sequents.

» Existential literals e ... e,, and universal literals uq ... ty,.

» Clause (e1 V...Vep V up V... Vuy ) in CNF &4,

Vs TV
all false none true = false

» Cube (ug A...Aup A egA...Aey ) in DNF &y

NV vV
all true none false = true
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(Lrow, L) Sequents

» Definition. A game-state specifier is a pair (L"", Lfut)
consisting of two sets of literals, L™ and L.

> Definition. We say that (L™ LfUt) matches assignment 7 iff:

1. every literal in L"°" evaluates to True under m, and
2. no literal in L't evaluates to False under .

» E.g., ({e}, {u}) matches {(e, True)} and {(e, True), (u, True)},
but does not match {} or {(e, True), (u, False)}.

» (LMW {¢,—(}) matches 7 only if 7 doesn't assign /.

11



(Lrow, L) Sequents

» Definition. A game-state specifier is a pair (L"", Lfut)
consisting of two sets of literals, L™ and L.
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(Lrow, L) Sequents

» Definition. A game-state specifier is a pair (L"", Lfut)
consisting of two sets of literals, L™ and L.
> Definition. We say that (L™ LfUt) matches assignment 7 iff:

1. every literal in L"°" evaluates to True under m, and
2. no literal in L't evaluates to False under .

» Definition. “(L" L) |= (& < 1))" means “for all
assignments 7 that match (L™ LfUt) | is logically
equivalent to ¢|x unless 7 is a don’t-care assignment”.

» Without ghost variables: No assignments are don't-care.
» With ghost variables: See paper for details.
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Correspondence of Sequents to Clauses and Cubes

» Consider a QBF with existential literals e; ... ey, and
universal literals uq ... uy,.

» Clause (1 V...Vey V up V... Vuy) in CNF ®;, corresponds to
sequent ({—eq,...,men}, {—ug, ..., um}) = (P, < False).

» Cube (ug A ... Aup A €1 A ... Aey) in DNF &y, corresponds to
sequent ({uy,...,um}, {e1,...,en}) E (P < True).

» Sequents generalize clauses/cubes because
(Lrow Lfuty = (® < 1)) can have ¢ be a
formula in terms of free variables.
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Inference rule for free variable

Literal r is free
(LI U {r}, L) k= (D4 & 1)
(L5™ U {=r}, LEY) |= (Bin < 1h2)

(LEW U L5, LY U LY U {r, =r}) (i & ite(r, 1, v2))
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Top-level algorithm (based on DPLL)

1. initialize_sequent_database();
2. Teur = J; Propagate();

3. while (true) {

12, }
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Top-level algorithm (based on DPLL)

1.
2.
3.
4.
5.
6.
7.

12, }

initialize_sequent_database();
Tewr = &; Propagate();
while (true) {
while (mey, doesn't match any database sequent) {
DecidelLit();

Propagate() ;
}

15



Top-level algorithm (based on DPLL)

1.
2.
3.
4.
5.
6.
7.
8.
9.

= e
N = O

initialize_sequent_database();
Tewr = &; Propagate();

while (true) {

while (m¢yr doesn't match any database sequent) {
DecidelLit();
Propagate();

}

Learn() ;

if (learned seq has form (@, Lf'%) |= (®;, < 1)) return ©;

Backtrack();

Propagate();
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> Let seq be a sequent (L"", L) = (&;, < ) in database.

» If there is a literal ¢ € LY such that

1. meur U {€} matches seq, and
2. (is not downstream of any unassigned literals in Lfut,

then —/ is forced; it is added to the current assignment 7.
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> Let seq be a sequent (L"", L) = (&;, < ) in database.

» If there is a literal ¢ € LY such that

1. meur U {€} matches seq, and
2. (is not downstream of any unassigned literals in Lfut,

then —/ is forced; it is added to the current assignment 7.

» Propagation ensures that the solver never re-explores areas of the
search space for which it already knows the answer.
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Experimental Comparison

Our solver: GhostQ.

Compared to computational-learning solver from:
B. Becker, R. Ehlers, M. Lewis, and P. Marin,
“ALLQBF solving by computational learning” (ATVA 2012).

Benchmarks (from same paper): synthesis from formal
specifications.

HWMCC'10 Benchmarks: One-step forward reachability.

v

v

v

v
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HWMCC'10 Benchmarks: Cactus Plot
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Conclusion

DPLL-based solver for open QBF.

v

v

Sequents generalize clauses and cubes.

» Generates proof certificates.

v

Our solver produces unordered BDDs.

» Unordered because of unit propagation.
» In our experience, often larger than OBDDs.
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