Solving QBF with Free Variables

Will Klieber, Mikoláš Janota, Joao Marques-Silva, Edmund Clarke Sep 17, 2013

Quantified Boolean Formulas (QBF)

Extension of propositional logic. Grammar:

```
\begin{array}{lll} x & ::= & \mathsf{boolean} \ \mathsf{variable} \\ Q & ::= & \exists \ \big| \ \forall \\ \Phi & ::= & x \ \big| \ Qx. \ \Phi \ \big| \ \Phi \land \Phi \ \big| \ \Phi \lor \Phi \ \big| \ \neg \Phi \ \big| \ \mathsf{True} \ \big| \ \mathsf{False} \end{array}
```

Quantified Boolean Formulas (QBF)

Extension of propositional logic. Grammar:

```
\begin{array}{lll} x & ::= & \mathsf{boolean} \ \mathsf{variable} \\ Q & ::= & \exists \ \big| \ \forall \\ \Phi & ::= & x \ \big| \ Qx. \ \Phi \ \big| \ \Phi \land \Phi \ \big| \ \Phi \lor \Phi \ \big| \ \neg \Phi \ \big| \ \mathsf{True} \ \big| \ \mathsf{False} \end{array}
```

- No variable may be quantified more than once.
- No variable may occur both free and bound.

Quantified Boolean Formulas (QBF)

Extension of propositional logic. Grammar:

```
\begin{array}{lll} x & ::= & \mathsf{boolean} \ \mathsf{variable} \\ Q & ::= & \exists \ \big| \ \forall \\ \Phi & ::= & x \ \big| \ Qx. \ \Phi \ \big| \ \Phi \land \Phi \ \big| \ \Phi \lor \Phi \ \big| \ \neg \Phi \ \big| \ \mathsf{True} \ \big| \ \mathsf{False} \end{array}
```

- No variable may be quantified more than once.
- No variable may occur both free and bound.
- Semantics:
 - $\forall x. \Phi = \Phi|_{x=\mathsf{True}} \wedge \Phi|_{x=\mathsf{False}}$
 - $\blacksquare \exists x. \Phi = \Phi|_{x=\mathsf{True}} \lor \Phi|_{x=\mathsf{False}}$

Open QBF

- Closed QBF: All variables quantified; answer is True or False.
- Open QBF: Contains free (unquantified) variables.
- ► Goal: Find equivalent propositional formula.
- ► E.g., given $\exists x. \ x \land (y \lor z)$, return $y \lor z$.

Open QBF

- ▶ Closed QBF: All variables quantified; answer is True or False.
- Open QBF: Contains free (unquantified) variables.
- Goal: Find equivalent propositional formula.
- ▶ E.g., given $\exists x. \ x \land (y \lor z)$, return $y \lor z$.
- Applications: symbolic model checking, synthesis from formal spec, etc.

Outline

- ► Naïve Algorithm
- Introduce sequents that generalize clauses for open QBF (without ghost variables)
- Experimental results
- ► Ghost variables (for non-CNF): see paper.

▶ Notation: "ite(x, ϕ_1 , ϕ_2)" is a formula with an *if-then-else*:

$$\mathrm{ite}(x,\phi_1,\phi_2) \,=\, (x \wedge \phi_1) \vee (\neg x \wedge \phi_2)$$

▶ Notation: "ite(x, ϕ_1 , ϕ_2)" is a formula with an *if-then-else*:

$$ite(x, \phi_1, \phi_2) = (x \land \phi_1) \lor (\neg x \land \phi_2)$$

Recursively Shannon-expand on free variables:

$$\Phi = ite(x, \Phi|_{x=\mathsf{True}}, \Phi|_{x=\mathsf{False}})$$

▶ Notation: "ite (x, ϕ_1, ϕ_2) " is a formula with an *if-then-else*:

$$ite(x, \phi_1, \phi_2) = (x \land \phi_1) \lor (\neg x \land \phi_2)$$

Recursively Shannon-expand on free variables:

$$\Phi = \text{ite}(x, \Phi|_{x=\mathsf{True}}, \Phi|_{x=\mathsf{False}})$$

Base case (no more free variables): Give to closed-QBF solver.

```
    function solve(Φ) {
    if (Φ has no free variables)
    return closed_qbf_solve(Φ);
    }
```

```
    function solve(Φ) {
    if (Φ has no free variables)
    return closed_qbf_solve(Φ);
    x := (a free variable in Φ);
    return ite(x, solve(Φ|x=True),
    solve(Φ|x=False));
    }
```

```
    function solve(Φ) {
    if (Φ has no free variables)
    return closed_qbf_solve(Φ);
    x := (a free variable in Φ);
    return ite(x, solve(Φ|x=True),
    solve(Φ|x=False));
    }
```

Builds OBDD if:

- 1. same branch order,
- 2. formula construction is memoized, and
- 3. $ite(x, \phi, \phi)$ is simplified to ϕ .

- ► Naïve Algorithm:
 - Similar to DPLL in terms of branching.
 - But lacks many optimizations that make DPLL fast:
 - Non-chronological backtracking
 - Clause learning
- Our open-QBF technique:
 - Extend existing closed-QBF algorithm to allow free variables.

▶ **Prenex Form:** $Q_1x_1...Q_nx_n.\phi$ where ϕ has no quantifiers.

- ▶ **Prenex Form:** $Q_1x_1...Q_nx_n.\phi$ where ϕ has no quantifiers.
- ▶ In $\forall x.\exists y. \phi$, we say that y is **downstream** of x.
 - ▶ $\exists y$ occurs inside scope of $\forall x$.

- ▶ **Prenex Form:** $Q_1x_1...Q_nx_n.\phi$ where ϕ has no quantifiers.
- ▶ In $\forall x.\exists y. \phi$, we say that y is **downstream** of x.
 - ▶ $\exists y$ occurs inside scope of $\forall x$.
- ► Free variables are upstream of all quantified variables.

- ▶ **Prenex Form:** $Q_1x_1...Q_nx_n.\phi$ where ϕ has no quantifiers.
- ▶ In $\forall x. \exists y. \phi$, we say that y is **downstream** of x.
 - ▶ $\exists y$ occurs inside scope of $\forall x$.
- ► Free variables are upstream of all quantified variables.
- ▶ Outermost: Not downstream of any unassigned variables.
 - ▶ E.g.: $\exists e_1. \forall u_2. \phi$ and assignment $\{(e_1, \mathsf{True})\}$: u_2 is outermost.

- ▶ **Prenex Form:** $Q_1x_1...Q_nx_n.\phi$ where ϕ has no quantifiers.
- ▶ In $\forall x.\exists y. \phi$, we say that y is **downstream** of x.
 - ▶ $\exists y$ occurs inside scope of $\forall x$.
- ► Free variables are upstream of all quantified variables.
- Outermost: Not downstream of any unassigned variables.
 - ► E.g.: $\exists e_1. \forall u_2. \phi$ and assignment $\{(e_1, \mathsf{True})\}$: u_2 is outermost.
- **Substitution:** $\Phi|_{\pi}$ where π is a partial assignment.

Closed QBF as a Game

- **►** Existential variables are **owned** by Player ∃.
- ► Universal variables are owned by Player ∀.
- Players assign variables in quantification order.
- ▶ The **goal** of Player \exists is to make Φ be true.
- ▶ The **goal** of Player \forall is to make Φ be false.

- Motivate definition of sequents.
- Existential literals $e_1 \dots e_n$ and universal literals $u_1 \dots u_m$.

$$\qquad \qquad \mathsf{Clause} \ (\underbrace{e_1 \vee ... \vee e_n \, \vee \, u_1 \vee ... \vee u_m }_{\mathsf{all false} \ (\mathsf{under} \ \pi)}) \ \mathsf{in} \ \mathsf{CNF} \ \Phi_{in}$$

- Motivate definition of sequents.
- ightharpoonup Existential literals $e_1 \dots e_n$ and universal literals $u_1 \dots u_m$.

► Clause
$$(\underbrace{e_1 \lor ... \lor e_n \lor u_1 \lor ... \lor u_m})$$
 in CNF Φ_{in} all false (under π) \Rightarrow false

- Motivate definition of sequents.
- ightharpoonup Existential literals $e_1 \dots e_n$ and universal literals $u_1 \dots u_m$.

- Motivate definition of sequents.
- \blacktriangleright Existential literals $e_1 \dots e_n$ and universal literals $u_1 \dots u_m$.

► Clause
$$(\underbrace{e_1 \lor ... \lor e_n}_{\text{all false}} \lor \underbrace{u_1 \lor ... \lor u_m}_{\text{none true}})$$
 in CNF Φ_{in}

$$\begin{array}{ccc} & & \text{Cube} & (\underbrace{u_1 \wedge ... \wedge u_n}_{\text{all true}} \wedge \underbrace{e_1 \wedge ... \wedge e_m}_{\text{none false}}) \text{ in } \underbrace{\mathsf{DNF} \; \Phi_{in}}_{\text{true}} \\ & & \Rightarrow & \mathsf{true} \\ \end{array}$$

▶ **Definition.** A game-state specifier is a pair $\langle L^{\text{now}}, L^{\text{fut}} \rangle$ consisting of two sets of literals, L^{now} and L^{fut} .

- ▶ **Definition.** A game-state specifier is a pair $\langle L^{\text{now}}, L^{\text{fut}} \rangle$ consisting of two sets of literals, L^{now} and L^{fut} .
- ▶ **Definition.** We say that $\langle L^{\mathsf{now}}, L^{\mathsf{fut}} \rangle$ matches assignment π iff:
 - 1. every literal in L^{now} evaluates to True under π , and
 - 2. no literal in L^{fut} evaluates to False under π .

- ▶ **Definition.** A game-state specifier is a pair $\langle L^{\text{now}}, L^{\text{fut}} \rangle$ consisting of two sets of literals, L^{now} and L^{fut} .
- ▶ **Definition.** We say that $\langle L^{\text{now}}, L^{\text{fut}} \rangle$ matches assignment π iff:
 - 1. every literal in L^{now} evaluates to True under π , and
 - 2. no literal in $L^{\rm fut}$ evaluates to False under π .
- ▶ E.g., $\langle \{e\}, \{u\} \rangle$ matches $\{(e, \mathsf{True})\}$ and $\{(e, \mathsf{True}), (u, \mathsf{True})\}$,

$\langle L^{\mathsf{now}}, L^{\mathsf{fut}} angle$ Sequents

- ▶ **Definition.** A game-state specifier is a pair $\langle L^{\text{now}}, L^{\text{fut}} \rangle$ consisting of two sets of literals, L^{now} and L^{fut} .
- ▶ **Definition.** We say that $\langle L^{\text{now}}, L^{\text{fut}} \rangle$ matches assignment π iff:
 - 1. every literal in L^{now} evaluates to True under π , and
 - 2. no literal in $L^{\rm fut}$ evaluates to False under π .
- ▶ E.g., $\langle \{e\}, \{u\} \rangle$ matches $\{(e, \mathsf{True})\}$ and $\{(e, \mathsf{True}), (u, \mathsf{True})\}$, but does not match $\{\}$ or $\{(e, \mathsf{True}), (u, \mathsf{False})\}$.

- ▶ **Definition.** A game-state specifier is a pair $\langle L^{\text{now}}, L^{\text{fut}} \rangle$ consisting of two sets of literals, L^{now} and L^{fut} .
- ▶ **Definition.** We say that $\langle L^{\mathsf{now}}, L^{\mathsf{fut}} \rangle$ matches assignment π iff:
 - 1. every literal in L^{now} evaluates to True under π , and
 - 2. no literal in $L^{\rm fut}$ evaluates to False under π .
- ▶ E.g., $\langle \{e\}, \{u\} \rangle$ matches $\{(e, \mathsf{True})\}$ and $\{(e, \mathsf{True}), (u, \mathsf{True})\}$, but does not match $\{\}$ or $\{(e, \mathsf{True}), (u, \mathsf{False})\}$.
- $ightharpoonup \langle L^{\mathrm{now}}, \{\ell, \neg \ell\} \rangle$ matches π only if π doesn't assign ℓ .

- ▶ **Definition.** A game-state specifier is a pair $\langle L^{\text{now}}, L^{\text{fut}} \rangle$ consisting of two sets of literals, L^{now} and L^{fut} .
- ▶ **Definition.** We say that $\langle L^{\text{now}}, L^{\text{fut}} \rangle$ matches assignment π iff:
 - 1. every literal in L^{now} evaluates to True under π , and
 - 2. no literal in L^{fut} evaluates to False under π .
- ▶ **Definition.** " $\langle L^{\mathsf{now}}, L^{\mathsf{fut}} \rangle \models (\Phi \Leftrightarrow \psi)$ " means "for all assignments π that match $\langle L^{\mathsf{now}}, L^{\mathsf{fut}} \rangle$, $\Phi|_{\pi}$ is logically equivalent to $\psi|_{\pi}$ unless π is a **don't-care** assignment".

- ▶ **Definition.** A game-state specifier is a pair $\langle L^{\mathsf{now}}, L^{\mathsf{fut}} \rangle$ consisting of two sets of literals, L^{now} and L^{fut} .
- ▶ **Definition.** We say that $\langle L^{\text{now}}, L^{\text{fut}} \rangle$ matches assignment π iff:
 - 1. every literal in L^{now} evaluates to True under π , and
 - 2. no literal in $L^{\rm fut}$ evaluates to False under π .
- ▶ **Definition.** " $\langle L^{\mathsf{now}}, L^{\mathsf{fut}} \rangle \models (\Phi \Leftrightarrow \psi)$ " means "for all assignments π that match $\langle L^{\mathsf{now}}, L^{\mathsf{fut}} \rangle$, $\Phi | \pi$ is logically equivalent to $\psi | \pi$ unless π is a **don't-care** assignment".
- ▶ Without ghost variables: No assignments are don't-care.
- ▶ With ghost variables: See paper for details.

Correspondence of Sequents to Clauses and Cubes

- ▶ Consider a QBF with existential literals $e_1 \dots e_n$ and universal literals $u_1 \dots u_m$.
- ▶ Clause $(e_1 \lor ... \lor e_n \lor u_1 \lor ... \lor u_m)$ in CNF Φ_{in} corresponds to sequent $\langle \{ \neg e_1, ..., \neg e_n \}, \{ \neg u_1, ..., \neg u_m \} \rangle \models (\Phi_{in} \Leftrightarrow \mathsf{False}).$

Correspondence of Sequents to Clauses and Cubes

- ▶ Consider a QBF with existential literals $e_1 \dots e_n$ and universal literals $u_1 \dots u_m$.
- ► Clause $(e_1 \lor ... \lor e_n \lor u_1 \lor ... \lor u_m)$ in CNF Φ_{in} corresponds to sequent $\langle \{ \neg e_1, ..., \neg e_n \}, \{ \neg u_1, ..., \neg u_m \} \rangle \models (\Phi_{in} \Leftrightarrow \mathsf{False})$.
- ▶ Cube $(u_1 \wedge ... \wedge u_m \wedge e_1 \wedge ... \wedge e_n)$ in DNF Φ_{in} corresponds to sequent $\langle \{u_1, ..., u_m\}, \{e_1, ..., e_n\} \rangle \models (\Phi_{in} \Leftrightarrow \mathsf{True})$.

Correspondence of Sequents to Clauses and Cubes

- ▶ Consider a QBF with existential literals $e_1 \dots e_n$ and universal literals $u_1 \dots u_m$.
- ► Clause $(e_1 \lor ... \lor e_n \lor u_1 \lor ... \lor u_m)$ in CNF Φ_{in} corresponds to sequent $\langle \{ \neg e_1, ..., \neg e_n \}, \{ \neg u_1, ..., \neg u_m \} \rangle \models (\Phi_{in} \Leftrightarrow \mathsf{False})$.
- ▶ Cube $(u_1 \wedge ... \wedge u_m \wedge e_1 \wedge ... \wedge e_n)$ in DNF Φ_{in} corresponds to sequent $\langle \{u_1, ..., u_m\}, \{e_1, ..., e_n\} \rangle \models (\Phi_{in} \Leftrightarrow \mathsf{True})$.
- ▶ Sequents generalize clauses/cubes because $\langle L^{\mathsf{now}}, L^{\mathsf{fut}} \rangle \models (\Phi \Leftrightarrow \psi)$ can have ψ be a formula in terms of free variables.

Inference rule for free variable

Literal r is free

$$\begin{split} &\langle L_1^{\mathrm{now}} \cup \{r\},\, L_1^{\mathrm{fut}} \rangle \models (\Phi_{in} \Leftrightarrow \psi_1) \\ &\langle L_2^{\mathrm{now}} \cup \{\neg r\},\, L_2^{\mathrm{fut}} \rangle \models (\Phi_{in} \Leftrightarrow \psi_2) \end{split}$$

$$\langle L_1^{\mathsf{now}} \cup L_2^{\mathsf{now}}, \, L_1^{\mathsf{fut}} \cup L_2^{\mathsf{fut}} \cup \{r, \neg r\} \rangle \models (\Phi_{in} \Leftrightarrow \mathsf{ite}(r, \psi_1, \psi_2))$$

Top-level algorithm (based on DPLL)

```
    initialize_sequent_database();
    π<sub>cur</sub> := Ø; Propagate();
    while (true) {
```

12. }

Top-level algorithm (based on DPLL)

```
1. initialize_sequent_database();
2. \pi_{cur} := \varnothing; Propagate();
3. while (true) {
4. while (\pi_{cur} doesn't match any database sequent) {
5. DecideLit();
6. Propagate();
7. }
```

12. }

Top-level algorithm (based on DPLL)

```
initialize_sequent_database();
 1.
 2.
      \pi_{cur} := \emptyset; Propagate();
 3.
      while (true) {
         while (\pi_{cur} doesn't match any database sequent) {
 4.
 5.
            DecideLit();
 6.
            Propagate();
 7.
 8.
         Learn():
         if (learned seg has form \langle \varnothing, L^{\text{fut}} \rangle \models (\Phi_{in} \Leftrightarrow \psi)) return \psi;
 9.
10.
         Backtrack():
    Propagate();
11.
12. }
```

Propagation

- ▶ Let seq be a sequent $\langle L^{\mathsf{now}}, L^{\mathsf{fut}} \rangle \models (\Phi_{in} \Leftrightarrow \psi)$ in database.
- ▶ If there is a literal $\ell \in L^{\mathsf{now}}$ such that
 - 1. $\pi_{cur} \cup \{\ell\}$ matches *seq*, and
 - 2. ℓ is not downstream of any unassigned literals in $L^{\rm fut}$, then $\neg \ell$ is *forced*; it is added to the current assignment π_{cur} .

Propagation

- ▶ Let seq be a sequent $\langle L^{\mathsf{now}}, L^{\mathsf{fut}} \rangle \models (\Phi_{in} \Leftrightarrow \psi)$ in database.
- ▶ If there is a literal $\ell \in L^{\mathsf{now}}$ such that
 - 1. $\pi_{cur} \cup \{\ell\}$ matches *seq*, and
 - 2. ℓ is not downstream of any unassigned literals in L^{fut} , then $\neg \ell$ is *forced*; it is added to the current assignment π_{cur} .
- ▶ Propagation ensures that the solver never re-explores areas of the search space for which it already knows the answer.

Experimental Comparison

- Our solver: GhostQ.
- Compared to computational-learning solver from:
 B. Becker, R. Ehlers, M. Lewis, and P. Marin,
 "ALLQBF solving by computational learning" (ATVA 2012).
- ▶ Benchmarks (from same paper): synthesis from formal specifications.
- ► HWMCC'10 Benchmarks: One-step forward reachability.

Cactus Plot

Formula Size

HWMCC'10 Benchmarks: Cactus Plot

Conclusion

- DPLL-based solver for open QBF.
- Sequents generalize clauses and cubes.
- ► Generates proof certificates.
- Our solver produces unordered BDDs.
 - Unordered because of unit propagation.
 - ▶ In our experience, often larger than OBDDs.