Solving QBF with Free Variables

Will Klieber, Mikola$ Janota,
Joao Marques-Silva, Edmund Clarke

Sep 17, 2013

Software Engineering Institute = CarnegieMellon

Quantified Boolean Formulas (QBF)

» Extension of propositional logic. Grammar:

x = boolean variable
Q = 3 } v
® = 2|Qr. | PAD| PV | D | True | False

Quantified Boolean Formulas (QBF)

» Extension of propositional logic. Grammar:

x = boolean variable
Q = 3 } v
® = 2|Qr. | PAD| PV | D | True | False

» No variable may be quantified more than once.

» No variable may occur both free and bound.

Quantified Boolean Formulas (QBF)

» Extension of propositional logic. Grammar:

x = boolean variable
Q = 3 } v
® = 2|Qr. | PAD| PV | D | True | False

» No variable may be quantified more than once.

» No variable may occur both free and bound.

» Semantics:
> V2. ® = Pli_Tye N Ply=False

» dz.® = (I)|:c:True \4 (D|x:FaIse

Open QBF

» Closed QBF: All variables quantified; answer is True or False.
» Open QBF: Contains free (unquantified) variables.
» Goal: Find equivalent propositional formula.

» E.g., given dx. x A (yVz), return yV z.

Open QBF

Closed QBF: All variables quantified; answer is True or False.

v

v

Open QBF: Contains free (unquantified) variables.

v

Goal: Find equivalent propositional formula.

» E.g., given dx. x A (yVz), return yV z.

v

Applications: symbolic model checking,
synthesis from formal spec, etc.

» Naive Algorithm

» Introduce sequents that generalize clauses for open QBF
(without ghost variables)

» Experimental results

» Ghost variables (for non-CNF): see paper.

Naive Algorithm

» Notation: “ite(x, 1, ¢2)" is a formula with an if-then-else:

ite(r, d1,¢92) = (T A d1) V (-2 A ¢2)

Naive Algorithm

» Notation: “ite(x, 1, ¢2)" is a formula with an if-then-else:

ite(r, d1,¢92) = (T A d1) V (-2 A ¢2)

» Recursively Shannon-expand on free variables:

¢ = ite(x, (I)|x:Truea q)‘:p:False)

Naive Algorithm

» Notation: “ite(x, 1, ¢2)" is a formula with an if-then-else:

ite(r, d1,¢92) = (T A d1) V (-2 A ¢2)

» Recursively Shannon-expand on free variables:
® = ite(z, P[;—Trues Plo—False)

» Base case (no more free variables): Give to closed-QBF solver.

Naive Algorithm

1. function solve(®d) {

2. if (P has no free variables)
3. return closed gbf _solve(®);
7 }

Naive Algorithm

function solve(®P) {
if (P has no free variables)
return closed gbf_solve(®);
x := (a free variable in ®);
return ite(x, solve(®|z=True),
solve(®|r=False)) ;

~N O OB W N

Naive Algorithm

1. function solve(®) {
2. f (P has no free variables)
3. return closed_gbf_solve(®d);
4. x := (a free variable in ®);
5. return ite(x, solve(®|z=True),
6. solve(®|z=False)) ;
7. %

Builds OBDD if:

1. same branch order,
2. formula construction is memoized, and
3. ite(z, ¢, ¢) is simplified to ¢.

Naive Algorithm

» Naive Algorithm:
» Similar to DPLL in terms of branching.
» But lacks many optimizations that make DPLL fast:

» Non-chronological backtracking
» Clause learning

» Our open-QBF technique:
» Extend existing closed-QBF algorithm to allow free variables.

Preliminaries

» Prenex Form: Qqz...Qnx,. ¢ where ¢ has no quantifiers.

Preliminaries

» Prenex Form: Qqz...Qnx,. ¢ where ¢ has no quantifiers.

» In Vz.3y. ¢, we say that y is downstream of z.
» Jy occurs inside scope of V.

Preliminaries

» Prenex Form: Qqz...Qnx,. ¢ where ¢ has no quantifiers.

» In Vz.3y. ¢, we say that y is downstream of z.
» Jy occurs inside scope of V.

» Free variables are upstream of all quantified variables.

Preliminaries

» Prenex Form: Qqz...Qnx,. ¢ where ¢ has no quantifiers.

» In Vz.3y. ¢, we say that y is downstream of z.
» Jy occurs inside scope of V.

» Free variables are upstream of all quantified variables.

» Outermost: Not downstream of any unassigned variables.

» E.g.: Je1.Vug.¢ and assignment {(eq, True)}:
u9 is outermost.

Preliminaries

» Prenex Form: Qqz...Qnx,. ¢ where ¢ has no quantifiers.

v

In Vz.3y. ¢, we say that y is downstream of z.

» Jy occurs inside scope of V.

v

Free variables are upstream of all quantified variables.

v

Outermost: Not downstream of any unassigned variables.

» E.g.: Je1.Vug.¢ and assignment {(eq, True)}:
u9 is outermost.

v

Substitution: ®|r where 7 is a partial assignment.

Closed QBF as a Game

Existential variables are owned by Player .

v

v

Universal variables are owned by Player V.

v

Players assign variables in quantification order.

\4

The goal of Player 3 is to make ® be true.

v

The goal of Player V is to make ® be false.

Properties of Clauses and Cubes

» Motivate definition of sequents.

» Existential literals e ... e,, and universal literals uq ... ty,.

» Clause (e1 V...Vep V up V... Vuy) in CNF &4,

-~

all false (under)

10

Properties of Clauses and Cubes

» Motivate definition of sequents.

» Existential literals e ... e,, and universal literals uq ... ty,.

» Clause (e1 V...Vep V up V... Vuy) in CNF &4,

-~

all false (under) = false

10

Properties of Clauses and Cubes

» Motivate definition of sequents.

» Existential literals e ... e,, and universal literals uq ... ty,.

» Clause (e1 V...Vep V up V... Vuy) in CNF &4,

Vs TV
all false none true = false

10

Properties of Clauses and Cubes

» Motivate definition of sequents.

» Existential literals e ... e,, and universal literals uq ... ty,.

» Clause (e1 V...Vep V up V... Vuy) in CNF &4,

Vs TV
all false none true = false

» Cube (ug A...Aup A egA...Aey) in DNF &y

NV vV
all true none false = true

10

(Lrow, L) Sequents

» Definition. A game-state specifier is a pair (L"", Lfut)
consisting of two sets of literals, L™ and L.

11

(Lrow, L) Sequents

» Definition. A game-state specifier is a pair (L"", Lfut)
consisting of two sets of literals, L™ and L.

> Definition. We say that (L™ LfUt) matches assignment 7 iff:

1. every literal in L"°" evaluates to True under m, and
2. no literal in L't evaluates to False under .

11

(Lrow, L) Sequents

» Definition. A game-state specifier is a pair (L"", Lfut)
consisting of two sets of literals, L™ and L.

> Definition. We say that (L™ LfUt) matches assignment 7 iff:

1. every literal in L"°" evaluates to True under m, and
2. no literal in L't evaluates to False under .

» E.g., ({e}, {u}) matches {(e, True)} and {(e, True), (u, True)},

11

(Lrow, L) Sequents

» Definition. A game-state specifier is a pair (L"", Lfut)
consisting of two sets of literals, L™ and L.

> Definition. We say that (L™ LfUt) matches assignment 7 iff:

1. every literal in L"°" evaluates to True under m, and
2. no literal in L't evaluates to False under .

» E.g., ({e}, {u}) matches {(e, True)} and {(e, True), (u, True)},
but does not match {} or {(e, True), (u, False)}.

11

(Lrow, L) Sequents

» Definition. A game-state specifier is a pair (L"", Lfut)
consisting of two sets of literals, L™ and L.

> Definition. We say that (L™ LfUt) matches assignment 7 iff:

1. every literal in L"°" evaluates to True under m, and
2. no literal in L't evaluates to False under .

» E.g., ({e}, {u}) matches {(e, True)} and {(e, True), (u, True)},
but does not match {} or {(e, True), (u, False)}.

» (LMW {¢,—(}) matches 7 only if 7 doesn't assign /.

11

(Lrow, L) Sequents

» Definition. A game-state specifier is a pair (L"", Lfut)
consisting of two sets of literals, L™ and L.

> Definition. We say that (L™ LfUt) matches assignment 7 iff:

1. every literal in L"°" evaluates to True under m, and
2. no literal in L't evaluates to False under .

» Definition. “(L" L) |= (& < 1))" means “for all

assignments 7 that match (L™ LfUt) | is logically
equivalent to ¢|x unless 7 is a don’t-care assignment”.

12

(Lrow, L) Sequents

» Definition. A game-state specifier is a pair (L"", Lfut)
consisting of two sets of literals, L™ and L.
> Definition. We say that (L™ LfUt) matches assignment 7 iff:

1. every literal in L"°" evaluates to True under m, and
2. no literal in L't evaluates to False under .

» Definition. “(L" L) |= (& < 1))" means “for all
assignments 7 that match (L™ LfUt) | is logically
equivalent to ¢|x unless 7 is a don’t-care assignment”.

» Without ghost variables: No assignments are don't-care.
» With ghost variables: See paper for details.

12

Correspondence of Sequents to Clauses and Cubes

» Consider a QBF with existential literals e; ... ey, and
universal literals uq ... uy,.

» Clause (1 V...Vey V up V... Vuy) in CNF ®;, corresponds to
sequent ({—eq,...,men}, {—ug, ..., um}) = (P, < False).

13

Correspondence of Sequents to Clauses and Cubes

» Consider a QBF with existential literals e; ... ey, and
universal literals uq ... uy,.

» Clause (1 V...Vey V up V... Vuy) in CNF ®;, corresponds to
sequent ({—eq,...,men}, {—ug, ..., um}) = (P, < False).

» Cube (ug A ... Aup A €1 A ... Aey) in DNF &y, corresponds to
sequent ({uy,...,um}, {e1,...,en}) E (P < True).

13

Correspondence of Sequents to Clauses and Cubes

» Consider a QBF with existential literals e; ... ey, and
universal literals uq ... uy,.

» Clause (1 V...Vey V up V... Vuy) in CNF ®;, corresponds to
sequent ({—eq,...,men}, {—ug, ..., um}) = (P, < False).

» Cube (ug A ... Aup A €1 A ... Aey) in DNF &y, corresponds to
sequent ({uy,...,um}, {e1,...,en}) E (P < True).

» Sequents generalize clauses/cubes because
(Lrow Lfuty = (® < 1)) can have ¢ be a
formula in terms of free variables.

13

Inference rule for free variable

Literal r is free
(LI U {r}, L) k= (D4 & 1)
(L5™ U {=r}, LEY) |= (Bin < 1h2)

(LEW U L5, LY U LY U {r, =r}) (i & ite(r, 1, v2))

14

Top-level algorithm (based on DPLL)

1. initialize_sequent_database();
2. Teur = J; Propagate();

3. while (true) {

12, }

15

Top-level algorithm (based on DPLL)

1.
2.
3.
4.
5.
6.
7.

12, }

initialize_sequent_database();
Tewr = &; Propagate();
while (true) {
while (mey, doesn't match any database sequent) {
DecidelLit();

Propagate() ;
}

15

Top-level algorithm (based on DPLL)

1.
2.
3.
4.
5.
6.
7.
8.
9.

= e
N = O

initialize_sequent_database();
Tewr = &; Propagate();

while (true) {

while (m¢yr doesn't match any database sequent) {
DecidelLit();
Propagate();

}

Learn() ;

if (learned seq has form (@, Lf'%) |= (®;, < 1)) return ©;

Backtrack();

Propagate();

15

> Let seq be a sequent (L"", L) = (&;, <) in database.

» If there is a literal ¢ € LY such that

1. meur U {€} matches seq, and
2. (is not downstream of any unassigned literals in Lfut,

then —/ is forced; it is added to the current assignment 7.

16

> Let seq be a sequent (L"", L) = (&;, <) in database.

» If there is a literal ¢ € LY such that

1. meur U {€} matches seq, and
2. (is not downstream of any unassigned literals in Lfut,

then —/ is forced; it is added to the current assignment 7.

» Propagation ensures that the solver never re-explores areas of the
search space for which it already knows the answer.

16

Experimental Comparison

Our solver: GhostQ.

Compared to computational-learning solver from:
B. Becker, R. Ehlers, M. Lewis, and P. Marin,
“ALLQBF solving by computational learning” (ATVA 2012).

Benchmarks (from same paper): synthesis from formal
specifications.

HWMCC'10 Benchmarks: One-step forward reachability.

v

v

v

v

17

Cactus Plot

800 T T T T T T
learner o

700 learner-d —<— 1

600 | learner-c —=—]

GQ

500
400
300

CPU time (s)

200
100

0
0 200 400 600 800 1000 1200 1400 1600 1800

instances 18

()]
NI
wn
0

>

S

| -~

o
L

™
o
—
X X
x %% X
x N %
X o X
X <X
x w X% i X -20
X XXX &mxxx% —
xx X&MM %K\ e
o g
8 £
B :
Kk
£
x
X X
x —
xm PN
pers —
XX
o
o
—
<t ™ N — o
o o o o o
— — — — —

09

19

learner-c

HWMCC'10 Benchmarks: Cactus Plot

900 s

Time Limit (per instance)

800 s
700 s
600 s
500 s
400 s
300s
200 s
100 s

== |_earner-C
=== GhostQ

——

Os %

100 200 300 400 500 600

Number of Instances Solved
20

Conclusion

DPLL-based solver for open QBF.

v

v

Sequents generalize clauses and cubes.

» Generates proof certificates.

v

Our solver produces unordered BDDs.

» Unordered because of unit propagation.
» In our experience, often larger than OBDDs.

21

