An introduction to Choco 3.0
an Open Source Java Constraint Programming Library

C. Prud’homme, JG. Fages
EMNantes, INRIA TASC, CNRS LINA
Nantes, France

16th September 2013
Outline

1. The Choco constraint solver
2. Inside Choco
3. Dealing with real world problems
4. The future of Choco
A solver for teaching and research

History

1999 a first CLAIRE impl. within the OCRE project
 an national initiative for an open constraint solver for both teaching
 and research (Nantes, Montpellier, Toulouse, Bouygues, ONERA)

2003 Choco 1.0 : a first Java implementation
 Portability, ease of use for newcomers, etc.
 Guillaume Rochart (Bouygues), Hadrien Cambazard (Grenoble INP)

2008 Choco 2.0 : a user-oriented version
 Separation between modeling and solving, more constraints.
 Charles Prud’homme (EMN), Hadrien Cambazard, Arnaud Malapert (Univ. Nice)

2013 Choco 3.0 : towards efficiency and reliability !
 Deep code refactoring, easy-to-use (and to maintain)
 Charles Prud’hui, Jean-Guillaume Fages (EMN), Xavier Lorca (EMN)
The Choco constraint solver

An open constraint solver

- Open (online source repository\(^a\), BSD license)
- Readable and flexible (designed for teaching and research)
- Efficient and reliable (solves real world problems)
- More than 60000 DL (2003-2013), worldwide
- Code: > 60k LOC, > 700 Classes

\(^a\) github.com/chocoteam/choco3
Academic users

- **In France:**
 - Universities: Nantes, Montpellier, Paris, Rennes, Toulouse, Clermont-Ferrand
 - Engineering schools: ENSTA, ENAC, École des Mines de Nancy, École des Mines de Nantes, ISIMA

- **Around the world:**
 - UK: University of Glasgow
 - Ireland: University of Cork
 - Canada: École Polytechnique de Montreal
Industrial users

- Big companies: Safran, Dassault, PSA
- Research agencies: ONERA, NASA
- Software and Integrators: Kls-Optim, alfaplan GmbH, Easyvirt, Hedera Technology, etc.
Outline

1. The Choco constraint solver
2. Inside Choco
3. Dealing with real world problems
4. The future of Choco
A wide **variety of variable** paradigms:

- Integer variables
- Boolean variables
- Set variables
- Graph variables
- Real variables
More than **80 available constraints** in Choco:

- **Classical arithmetic constraints**: $=, \neq, <, \leq, >, \geq$.
- A large set of useful **global constraints**: AllDifferent, GlobalCardinality, NValue, Cumulative, Diffn, Occurrence, Element, Regular, Circuit . . .
- **Exclusive** constraints: Tree, CostRegular, Ibex . . .
- **Reified** constraints: any constraint can be reified.
Discrete-continuous hybridization

The Ibex global constraint:

- Handles numerous **non linear continuous expressions**

 $+, -, *, /, =, <, >, \leq, \geq, \min, \max, \text{abs, sqr, sqrt, exp, log, pow, cos, sin, tan, acos, asin, atan} \ldots$

- Can mix **integer and real** variables.
Choco natively supports explained constraints.

- Both generic and *ad hoc* explanations schemas
- Asynchronous and lazy computation, flattened or unflattened storage
- **Improve** resolution (CBJ, DBT, path repair, LNS)

Next steps:
- Providing **feedback** to the user
- Nogood recording / SAT Solver interaction
Search-related tools

Different kinds of use:
- Get a solution,
- Enumerate all solutions,
- Find an optimal solution

Predefined search methods:
- Built-in search strategies (DomWDeg, ABS, IBS, etc.)
- and some optimization procedures (LNS, fast restart, Last Conflict, etc.).
An intuitive user interface

Use of Factories to build a model:
- Variables: VariableFactory,
- Constraints: IntConstraintFactory, LogicalConstraintFactory, SetConstraintsFactory...
- Strategies: IntStrategyFactory, SetStrategyFactory...
Contestant within the MiniZinc Challenge (2012, 2013)
JSR-331 implementation (in progress)
CP-Viz interface
One-sheet documentation, teaching materials, articles, demo material (> 60 examples), etc.
The problem is to arrange \(k \) sets of numbers 1 to \(n \) so that each appearance of the number \(m \) is \(m \) numbers on from the last.

Ex: \(L(k = 3, n = 9) = 3 \ 4 \ 7 \ 8 \ 3 \ 9 \ 4 \ 5 \ 3 \ 6 \ 7 \ 4 \ 8 \ 5 \ 2 \ 9 \ 6 \ 2 \ 7 \ 5 \ 2 \ 8 \ 1 \ 6 \ 1 \ 9 \ 1 \)

```java
Solver s = new Solver("Langford");

IntVar[] p = VF.enumeratedArray("p", n*k, 0, k*n-1, s);
for (int i = 0; i < n; i++) {
    for (int j = 0; j < n*(k - 1); j+=n) {
        s.post(ICF.arithm(VF.offset(p[i+j], i+2), "=" , p[i+(j+n)]));
    }
}

s.post(ICF.arithm(p[0], "<", p[n*k-1]));
s.post(ICF.allDifferent(position, "AC"));

s.set(ISF.firstFail_InDomainMax(position));
s.findSolution();
```
Outline

1. The Choco constraint solver
2. Inside Choco
3. Dealing with real world problems
4. The future of Choco
Dealing with real world problems

Attacking real world problems

- Entropy, Easyvirt, Hedera: data center management (VM placement),
- Vaberlin, GSD lab: software development, code generation,
- Safran, Dassault Aviation: mission planning,
- KLS Optim, Optilogistic: loading plans for vehicles and palettes,
- Biotrial, Maif: personal scheduling,
- Kosmos: timetabling for secondary schools,
- PSA: online car configuration (prototype),
They like

- Modeling (declarative, reliable),
- *Ad hoc* constraints (simplicity),
- Scalability (more than 100,000 VMs).

Issues

- Clear problem statement,
- Unaware of NP-hardness,
- Discrete-continuous hybridization,
- Multi-objective resolution.
Dealing with real world problems

Discussion

Few feedbacks from users
- only when they have trouble modeling a problem,
- or when there is a bug.
⇒ BSD license

Academic inconvenience
- Cannot provide professional support (heavy administration),
- Not interested in turnkey project (SQL, HMI) : AIMMS?
Outline

1. The Choco constraint solver
2. Inside Choco
3. Dealing with real world problems
4. The future of Choco
Explanations:
- User-oriented explanations
- SAT Solver interaction
- Discrete-continuous bridge in practice
- Parallelization / distribution
- Robotic applications (Ibex)
Thank you for your attention!

Fathers

- Founding fathers: François Laburthe (Amadeus), Narendra Jussien (EMN, LINA)
- Funding fathers: École des Mines de Nantes, (Bouygues SA, Amadeus SA)