Solving Temporal Problems using SMT: Strong Controllability

Alessandro Cimatti **Andrea Micheli** Marco Roveri

Embedded Systems Unit, Fondazione Bruno Kessler Trento, Italy amicheli@fbk.eu

12 October 2012

Constraint Programming 2012

1 [The Strong Controllability Problem](#page-2-0)

2 [SMT-based encodings](#page-14-0)

- [DTPU encodings](#page-24-0)
- [TCSPU specific encodings](#page-32-0)

3 [Experimental Evaluation](#page-42-0)

Outline

1 [The Strong Controllability Problem](#page-2-0)

2 [SMT-based encodings](#page-14-0) • [DTPU encodings](#page-24-0) **• TCSPU** specific encodings

3 [Experimental Evaluation](#page-42-0)

[SMT-based encodings](#page-14-0) [Experimental Evaluation](#page-42-0) [Conclusion](#page-47-0)
000000000000000 0 \circ

Scheduling for planning applications

The motivating problem

The motivating problem

The motivating problem

The motivating problem

The motivating problem

[SMT-based encodings](#page-14-0) [Experimental Evaluation](#page-42-0) [Conclusion](#page-47-0)
000000000000000 0 \circ

Temporal Problems with Uncertainty

Example

 A_s , A_e , B_s are <code>Controllable Time Points (X_c)</code> B_e is an **Uncontrollable Time Point** (X_u)

- \rightarrow represents **Free Constraints (** C_f)
- \cdots > represents **Contingent Constraints** (C_c)

[SMT-based encodings](#page-14-0) [Experimental Evaluation](#page-42-0) [Conclusion](#page-47-0)
000000000000000 0 \circ

Temporal Problems with Uncertainty

Example

 A_s , A_e , B_s are <code>Controllable Time Points (X_c)</code> B_e is an **Uncontrollable Time Point** (X_u)

- \rightarrow represents **Free Constraints (** C_f)
- \cdots > represents **Contingent Constraints** (C_c)

Taxonomy

Let
$$
\{x_1, ..., x_k\} \doteq X_c \cup X_u
$$
.

[SMT-based encodings](#page-14-0) [Experimental Evaluation](#page-42-0) [Conclusion](#page-47-0)
000000000000000 0

 \circ

Strong Controllability

Intuition

Search for a **Fixed Schedule** that fulfills all free the constraints in every situation.

[The Strong Controllability Problem](#page-2-0) [SMT-based encodings](#page-14-0) [Experimental Evaluation](#page-42-0) [Conclusion](#page-47-0)

 \circ

 \circ

Strong Controllability

Intuition

Search for a **Fixed Schedule** that fulfills all free the constraints in every situation.

[The Strong Controllability Problem](#page-2-0) [SMT-based encodings](#page-14-0) [Experimental Evaluation](#page-42-0) [Conclusion](#page-47-0) 0000

Strong Controllability

Definition

A temporal problem with uncertainty is **Strongly Controllable** if

$$
\exists \vec{X}_c. \forall \vec{X}_u. (C_c(\vec{X}_c, \vec{X}_u) \rightarrow C_f(\vec{X}_c, \vec{X}_u))
$$

where \vec{X}_{c} and \vec{X}_{u} are the vectors of controllable and uncontrollable time points respectively, $\mathcal{C}_{c}(\vec{X}_{c},\vec{X}_{\iota})$ are the contingent constraints and $C_f(\vec{X}_c, \vec{X}_u)$ are the free constraints.

First comprehensive implemented solver for Strong Controllability

- Logic-based framework for Temporal Problems with **Uncertainty**
- Efficient encodings of Strong Controllability problems in SMT
- Extensive experimental evaluation of the approach

[The Strong Controllability Problem](#page-2-0)

- 2 [SMT-based encodings](#page-14-0) • [DTPU encodings](#page-24-0)
	- [TCSPU specific encodings](#page-32-0)

3 [Experimental Evaluation](#page-42-0)

Satisfiability Modulo Theory (SMT)

SMT is the problem of deciding satisfiability of a first-order Boolean combination of theory atoms in a given theory T .

Given a formula *φ*, *φ* is satisfiable if there exists a model *µ* such that $\mu \models \phi$.

Satisfiability Modulo Theory (SMT)

SMT is the problem of deciding satisfiability of a first-order Boolean combination of theory atoms in a given theory T .

Given a formula *φ*, *φ* is satisfiable if there exists a model *µ* such that $\mu \models \phi$.

Example

 $\phi = (\forall x.(x > 0) \lor (y > x)) \land (z > y)$ is satisfiable in the theory of real arithmetic because

$$
\mu = \{(y,6), (z,8)\}
$$

is a model that satisfies *φ*.

Satisfiability Modulo Theory (SMT)

SMT is the problem of deciding satisfiability of a first-order Boolean combination of theory atoms in a given theory T .

Given a formula *φ*, *φ* is satisfiable if there exists a model *µ* such that $\mu \models \phi$.

Example

 $\phi = (\forall x.(x > 0) \lor (y > x)) \land (z > y)$ is satisfiable in the theory of real arithmetic because

$$
\mu = \{(y,6), (z,8)\}
$$

is a model that satisfies *φ*.

Theories

Various theories can be used.

In this work:

- LRA (Linear Real Arithmetic)
- **•** QF_LRA (Quantifier-Free Linear Real Arithmetic)

Quantifier Elimination in LRA

Quantifier Elimination Definition

A theory T has quantifier elimination if for every formula Φ , there exists another formula Φ_{OF} without quantifiers which is equivalent to it (modulo the theory T)

Quantifier Elimination in LRA

Quantifier Elimination Definition

A theory T has quantifier elimination if for every formula Φ , there exists another formula Φ_{OF} without quantifiers which is equivalent to it (modulo the theory T)

LRA theory admits quantifier elimination, but elimination algorithms are very costly (doubly exponential in the size of the original formula).

Example

$$
(\exists x.(x \geq 2y + z) \land (x \leq 3z + 5)) \leftrightarrow (2y - 2z - 5 \leq 0)
$$

[SMT-based encodings](#page-14-0) [Experimental Evaluation](#page-42-0) [Conclusion](#page-47-0) Conclusion \circ \circ

First step: Uncontrollability Isolation

Let $e \in X_u$ and $b \in X_c$. For every contingent constraint $(e - b) \in [l, u]$, we introduce an offset $y = b + u - e$.

000000000000

[SMT-based encodings](#page-14-0) [Experimental Evaluation](#page-42-0) [Conclusion](#page-47-0)

First step: Uncontrollability Isolation

Let $e \in X_u$ and $b \in X_c$. For every contingent constraint $(e - b) \in [l, u]$, we introduce an offset $y = b + u - e$.

Definition

- Let \vec{Y}_μ be the offsets for a given Temporal Problem with Uncertainty
- Let $\mathsf{\Gamma}(\vec{Y}_u)$ be the rewritten Contingent Constraints
- Let $\Psi(\vec{X}_{c},\vec{Y}_{u})$ the rewritten Free Constraints.

[The Strong Controllability Problem](#page-2-0) [SMT-based encodings](#page-14-0) [Experimental Evaluation](#page-42-0) [Conclusion](#page-47-0)

 \circ

Uncontrollability Isolation: example

Original formulation

$$
\begin{aligned} \exists A_{\mathsf{s}}, A_{\mathsf{e}}, B_{\mathsf{s}}.\ \forall B_{\mathsf{e}}.\\ &((B_{\mathsf{e}}-B_{\mathsf{s}})\in [8,11])\rightarrow (((A_{\mathsf{e}}-A_{\mathsf{s}})\in [7,11])\\ &\wedge((B_{\mathsf{e}}-A_{\mathsf{s}})\in [0,20])\\ &\wedge((B_{\mathsf{s}}-A_{\mathsf{e}})\in [0,\infty)))\end{aligned}
$$

Uncontrollability Isolation: example

Original formulation

$$
\begin{aligned} \exists A_{\mathsf{s}}, A_{\mathsf{e}}, B_{\mathsf{s}}.\ \forall B_{\mathsf{e}}.\\ &((B_{\mathsf{e}}-B_{\mathsf{s}})\in [8,11])\rightarrow (((A_{\mathsf{e}}-A_{\mathsf{s}})\in [7,11])\\ &\wedge((B_{\mathsf{e}}-A_{\mathsf{s}})\in [0,20])\\ &\wedge((B_{\mathsf{s}}-A_{\mathsf{e}})\in [0,\infty)))\end{aligned}
$$

Rewritten formulation with $\,Y_{B_{e}}$ offset $\exists A_s, A_e, B_s$. $\forall Y_{B_e}$. $(Y_{B_0} \in [0,3]) \rightarrow (((A_e - A_s) \in [7,11])$ $\wedge(((B_s+11-\textit{Y}_{B_e})-A_s) \in [0,20])$ $\wedge ((B_{s} - A_{e}) \in [0, \infty)))$ $\vec{Y}_u = [Y_{B_e}]$ **•** $\Gamma(\vec{Y}_u) = (Y_{B_e} \in [0, 3])$ $\bullet \ \Psi(\vec{X}_c, \vec{Y}_u) = (((A_e - A_s) \in [7, 11]) \land ... \in [0, \infty)))$

[The Strong Controllability Problem](#page-2-0)

3 [Experimental Evaluation](#page-42-0)

[DTPU encodings](#page-25-0)

Direct and Naïve encodings

Direct Encoding

Strong Controllability definition is by itself an encoding in SMT(LRA)

$$
\exists \vec{X}_c. \forall \vec{X}_u. (C_c(\vec{X}_c, \vec{X}_u) \rightarrow C_f(\vec{X}_c, \vec{X}_u))
$$

[DTPU encodings](#page-26-0)

Direct and Naïve encodings

Direct Encoding

Strong Controllability definition is by itself an encoding in SMT(LRA)

$$
\exists \vec{X}_c. \forall \vec{X}_u. (C_c(\vec{X}_c, \vec{X}_u) \rightarrow C_f(\vec{X}_c, \vec{X}_u))
$$

Naïve Encoding

Thanks to uncontrollability isolation, Strong Controllability can be rewritten as follows.

$$
\exists \vec{X}_c. \forall \vec{Y}_u. (\Gamma(\vec{Y}_u) \rightarrow \Psi(\vec{X}_c, \vec{Y}_u))
$$

Idea: because of the cost of quantifier elimination, many small quantifications can be solved more efficiently than a big single one.

Idea: because of the cost of quantifier elimination, many small quantifications can be solved more efficiently than a big single one.

Starting Point

We assume $\Psi(\vec{X}_{c},\vec{Y}_{u})$ $\Psi(\vec{X}_c, \vec{Y}_u) = \bigwedge$ h $\psi_h(\vec{X}_{c_h}, \vec{Y}_{u_h})$

Idea: because of the cost of quantifier elimination, many small quantifications can be solved more efficiently than a big single one.

Starting Point

We assume $\Psi(\vec{X}_{c},\vec{Y}_{u})$

$$
\Psi(\vec{X}_c, \vec{Y}_u) \doteq \bigwedge_h \psi_h(\vec{X}_{c_h}, \vec{Y}_{u_h})
$$

Distributed Encoding

From the Naïve Encoding we can derive a Distributed Encoding, by pushing the quantifications:

$$
\exists \vec{X}_c. \bigwedge_h \forall \vec{Y}_{u_h}. (\neg \Gamma(\vec{Y}_u)|_{Y_{u_h}} \vee \psi_h(\vec{X}_{c_h}, \vec{Y}_{u_h}))
$$

Idea: Starting from Distributed Encoding, we can eliminate quantifiers during the encoding, producing a QF_LRA formula.

[SMT-based encodings](#page-14-0) [Experimental Evaluation](#page-42-0) [Conclusion](#page-47-0) Conclusion Conclusion

[DTPU encodings](#page-31-0)

Eager ∀ Elimination Encoding

Idea: Starting from Distributed Encoding, we can eliminate quantifiers during the encoding, producing a QF_LRA formula.

Encoding

Let

$$
\psi_h^{\Gamma}(\vec{X}_{c_h}) \doteq \neg \exists \vec{Y}_{u_h}.(\Gamma(\vec{Y}_{u_h})|_{Y_{u_h}} \wedge \neg \psi_h(\vec{X}_{c_h}, \vec{Y}_{u_h}))
$$

- \bullet Resolve $\psi_h^{\mathsf{F}}(\vec{\mathsf{X}}_{c_h})$ for every clause independently using a quantifier elimination procedure
- Solve the QF_{-LRA} encoding:

$$
\exists \vec{X}_c. \bigwedge_h \psi_h^{\Gamma}(\vec{X}_{c_h})
$$

[The Strong Controllability Problem](#page-2-0)

3 [Experimental Evaluation](#page-42-0)

Consider a single TCSPU constraint:

$$
B-A \in \boxed{[0,20]}
$$
 [25,50] [60,75]

Consider a single TCSPU constraint:

$$
B-A \in \boxed{[0,20]}
$$
 [25,50] [60,75]

Encoding TCSPU constraints in 2-CNF (Hole Encoding)

$$
\begin{gathered} ((B-A)>0) \\ \wedge \left((B-A)<20 \right) \vee \left((B-A)>25 \right) \\ \wedge \left((B-A)<50 \right) \vee \left((B-A)>60 \right) \\ \wedge \left((B-A)<75 \right) \end{gathered}
$$

Static quantification TCSPU

Idea: Exploit Hole Encoding for TCSPU to statically resolve quantifiers in the Eager \forall elimination encoding.

[The Strong Controllability Problem](#page-2-0) [SMT-based encodings](#page-14-0) [Experimental Evaluation](#page-42-0) [Conclusion](#page-47-0)

[TCSPU specific encodings](#page-36-0)

Static quantification TCSPU

Idea: Exploit Hole Encoding for TCSPU to statically resolve quantifiers in the Eager \forall elimination encoding.

Approach

Hole Encoding gives us a 2-CNF formula. We can enumerate all the possible (8) cases and statically resolve the quantification.

[The Strong Controllability Problem](#page-2-0) [SMT-based encodings](#page-14-0) [Experimental Evaluation](#page-42-0) [Conclusion](#page-47-0) 0000

[TCSPU specific encodings](#page-37-0)

Static quantification TCSPU

Idea: Exploit Hole Encoding for TCSPU to statically resolve quantifiers in the Eager \forall elimination encoding.

Approach

Hole Encoding gives us a 2-CNF formula. We can enumerate all the possible (8) cases and statically resolve the quantification.

Cases

Let $b_i, b_j \in X_c$, $e_i, e_j \in X_u$.

The only possible clauses in the Hole Encoding are in the form:

\n $(b_i - b_j) \leq k$ \n	\n $(b_i - b_j) \leq k_1 \vee (b_i - b_j) \geq k_2$ \n
\n $(e_i - b_j) \leq k$ \n	\n $(e_i - b_j) \leq k_1 \vee (e_i - b_j) \geq k_2$ \n
\n $(b_i - e_j) \leq k$ \n	\n $(b_i - e_j) \leq k_1 \vee (b_i - e_j) \geq k_2$ \n
\n $(e_i - e_j) \leq k$ \n	\n $(e_i - e_j) \leq k_1 \vee (e_i - e_j) \geq k_2$ \n

[TCSPU specific encodings](#page-38-0)

Static quantification TCSPU (Example)

Let $b \in X_c$, $e \in X_u$ and let y_e be the offset for e. Let C be a hole-encoded clause of the TCSPU problem.

$$
C \doteq (b-e) \leq u \vee (b-e) \geq l
$$

[TCSPU specific encodings](#page-39-0)

Static quantification TCSPU (Example)

Let $b \in X_c$, $e \in X_u$ and let y_e be the offset for e. Let C be a hole-encoded clause of the TCSPU problem.

$$
C \doteq (b-e) \leq u \vee (b-e) \geq l
$$

In the eager ∀ elimination encoding we have

$$
\neg \exists y_e. ((y \ge 0) \land (y \le u_e - l_e) \land \neg (((b - (b_e + u - y_e)) \le u) \lor ((b - (b_e + u - y_e)) \ge l)).
$$

00000000**0000**

[TCSPU specific encodings](#page-40-0)

Static quantification TCSPU (Example)

Let $b \in X_c$, $e \in X_u$ and let y_e be the offset for e. Let C be a hole-encoded clause of the TCSPU problem.

$$
C \doteq (b-e) \leq u \vee (b-e) \geq l
$$

In the eager ∀ elimination encoding we have

$$
\neg \exists y_e. ((y \ge 0) \land (y \le u_e - l_e) \land \neg (((b - (b_e + u - y_e)) \le u) \lor ((b - (b_e + u - y_e)) \ge l)).
$$

The formula can be **statically** simplified

$$
R = ((I - b + be + ue \le 0) \vee (I - b + be + le > 0)) \wedge ((I - b + be + le < 0) \vee (b - be - u - le \le 0))
$$

 0000

00000000**0000**

[TCSPU specific encodings](#page-41-0)

Static quantification *TCSPU* (Example)

Let $b \in X_c$, $e \in X_u$ and let y_e be the offset for e. Let C be a hole-encoded clause of the TCSPU problem.

$$
C \doteq (b-e) \leq u \vee (b-e) \geq l
$$

In the eager ∀ elimination encoding we have

$$
\neg \exists y_e. ((y \ge 0) \land (y \le u_e - l_e) \land \neg (((b - (b_e + u - y_e)) \le u) \lor ((b - (b_e + u - y_e)) \ge l)).
$$

The formula can be **statically** simplified

$$
R = ((l - b + be + ue \le 0) \vee (l - b + be + le > 0)) \wedge ((l - b + be + le < 0) \vee (b - be - u - le \le 0))
$$

Whenever a clause matches the structure of C we can derive $\psi_{h}^{\Gamma}(\vec{X}_{c_{h}})$ by substituting appropriate values for *l*, *u*, b_e , l_e and u_e in *R*.

1 [The Strong Controllability Problem](#page-2-0)

2 [SMT-based encodings](#page-14-0) • [DTPU encodings](#page-24-0) **• TCSPU** specific encodings

3 [Experimental Evaluation](#page-42-0)

 \circ

Strong Controllability Results

- **Random instance** generator
- SMT solvers:
	- \bullet Z3 (QF_LRA, LRA)
	- MathSAT5 (QF_LRA)
- Quantification techniques:
	- Z3 simplifier
	- Fourier-Motzkin
	- Loos-Weispfenning
	- Static quantification for TCSPU

Strong Controllability Results

STPU Results

of instances

- **Random instance** generator
- SMT solvers:
	- Z3 (QF LRA, LRA)
	- MathSAT5 (QF_LRA)
- **Quantification** techniques:
	- Z3 simplifier
	- Fourier-Motzkin
	- Loos-Weispfenning
	- Static quantification for TCSPU

Strong Controllability Results

TCSPU Results

- **Random instance** generator
- SMT solvers:
	- Z3 (QF LRA, LRA)
	- MathSAT5 (QF_LRA)
- **Quantification** techniques:
	- Z3 simplifier
	- Fourier-Motzkin
	- Loos-Weispfenning
	- Static quantification for TCSPU

Strong Controllability Results

DTPU Results

- **Random instance** generator
- SMT solvers:
	- Z3 (QF LRA, LRA)
	- MathSAT5 (QF_LRA)
- **Quantification** techniques:
	- Z3 simplifier
	- Fourier-Motzkin
	- Loos-Weispfenning
	- Static quantification for TCSPU

1 [The Strong Controllability Problem](#page-2-0)

2 [SMT-based encodings](#page-14-0) • [DTPU encodings](#page-24-0) **• TCSPU** specific encodings

3 [Experimental Evaluation](#page-42-0)

Conclusions

Contributions

- First comprehensive implemented solver for DTPU Strong **Controllability**
- Efficient encodings of Strong Controllability problems in SMT framework
- Tailored constant-time quantification technique for TCSPU
- Extensive experimental evaluation of the approach

Conclusions

Contributions

- **•** First comprehensive implemented solver for DTPU Strong **Controllability**
- Efficient encodings of Strong Controllability problems in SMT framework
- Tailored constant-time quantification technique for TCSPU
- **•** Extensive experimental evaluation of the approach

Future works

- Dynamic Controllability
- Cost function optimization
- **·** Incrementality

Thanks for your attention!