
Introduction Filtering Algorithms Search Tree Computational Results

Resource Constrained Shortest Path
with a Super Additive Objective Function

Stefano Gualandi
Università di Pavia, Dipartimento di Matematica

Federico Malucelli
Politecnico di Milano, Dipartimento di Elettronica e Informazione

October 5, 2012

Introduction Filtering Algorithms Search Tree Computational Results

1 Introduction

2 Filtering Algorithms

3 Search Tree

4 Computational Results

Introduction Filtering Algorithms Search Tree Computational Results

Introduction

Let G = (N ∪ {s, t},A) be an (acyclic) digraph with source s and
destination t. Every arc has a weight we and a time te .

Let K be a set of resources and rk
e is the consumption of resource

k on arc e ∈ A.

A path Pst from s to t is resource feasible iff at destination:

rk(Pst) =
∑

e∈Pst

rk
e ≤ Uk , ∀k ∈ K

Problem (RCSP)
The Resource Constrained Shortest Path Problem consists in
finding a resource feasible path in G from s to t of
minimum cost.

Introduction Filtering Algorithms Search Tree Computational Results

Super Additivity

Definition (Path Super Additivity)
A (path) cost function is super additive iff:

c(P1 ∪ P2) ≥ c(P1) + c(P2) (1)

We consider here a specific type of super additive cost function:

c(P) = w(P) + f

(
t(P)

)
=

∑
e∈P

we + f

(∑
e∈P

te

)

where f
(
·
)

is a super additive function. Since w(P) is additive,
c(P) is also super additive.

Introduction Filtering Algorithms Search Tree Computational Results

Examples: Stepwise and Quadratic Cost Functions

The extra allowances paid to bus
drivers of an Italian trasportation
company follow a stepwise cost

function

“People value time nonlinearly: small
amounts of time have relatively low
value whereas large amounts of time

are very valuable”
(Gabriel and Bernstein, 1997)

Introduction Filtering Algorithms Search Tree Computational Results

Bellmann’s optimality conditions

Super additivity invalidates Bellmann’s optimality conditions:
Two subpaths of an optimal path might be not optimal.

s

c

a

d

b

t i

we,te
5,1 5,1 5,1 5,1

10,0 5,0 10,0 5,0

Example: Consider c(P) = w(P) + f
(
P
)
, with f

(
t(P)

)
= (
∑

e∈P te)2

There are 4 paths:
P1 = {s, a, i , b, t}, w(P1) = 20, f

(
P1
)
= 16, c(P1) = 36

P2 = {s, c, i , b, t}, w(P2) = 25, f
(
P2
)
= 4, c(P2) = 29

P3 = {s, a, i , d , t}, w(P3) = 25, f
(
P3
)
= 4, c(P3) = 29

P4 = {s, c, i , d , t}, w(P4) = 30, f
(
P4
)
= 0, c(P4) = 30

Introduction Filtering Algorithms Search Tree Computational Results

Bellmann’s optimality conditions

Super additivity invalidates Bellmann’s optimality conditions:
Two subpaths of an optimal path might be not optimal.

s

c

a

d

b

t i

we,te
5,1 5,1 5,1 5,1

10,0 5,0 10,0 5,0

Example: Consider c(P) = w(P) + f
(
P
)
, with f

(
t(P)

)
= (
∑

e∈P te)2

The optimal path P2 = {s, c, i , b, t} is composed of two subpaths:
Psi = {s, c, i} with cost c(Psi) = 15 > 14 = c({s, a, i})
Pit = {i , b, t} with cost c(Pit) = 14

Remark: In addition our problem has bounded resources
(. . . and side constraints)!

Introduction Filtering Algorithms Search Tree Computational Results

1 Introduction

2 Filtering Algorithms

3 Search Tree

4 Computational Results

Introduction Filtering Algorithms Search Tree Computational Results

Our approach
We apply both resource-based and cost-based filtering algorithms
to remove nodes and arcs as much as possible. At the same
time, we keep on updating lower and upper bounds
(FilterAndDive). When updating upper bounds, we can check
additional side constraints.

After that propagation reaches a fix point, we apply a near shortest
path enumeration algorithm.

Introduction Filtering Algorithms Search Tree Computational Results

Resource-based Filtering

(Beasley and Christofides, 1989; Dumitrescu and Boland, 2003; Sellmann et al., 2007)�
�

�
�

if rk(P∗si) + rk
e + rk(P∗jt) > Uk then remove arc e = (i , j)

where P∗si and P∗jt are shortest (k-th resource) paths.

Resource consumption of each arc. Upper resource bound U = 7.

s

c

a

d

b

t

6

3 2 1

1

2

4

1

2

s

c

a

d

b

t 3 2 1

1

2

4

1

2

s

c

a

d

b

t
2 1

1

2

4

1

2

s

c

a

d

b

t
2

1

4

1

2

Introduction Filtering Algorithms Search Tree Computational Results

Resource-based Filtering

(Beasley and Christofides, 1989; Dumitrescu and Boland, 2003; Sellmann et al., 2007)�
�

�
�

if rk(P∗si) + rk
e + rk(P∗jt) > Uk then remove arc e = (i , j)

where P∗si and P∗jt are shortest (k-th resource) paths.

Resource consumption of each arc. Upper resource bound U = 7.

s

c

a

d

b

t

6

3 2 1

1

2

4

1

2

s

c

a

d

b

t 3 2 1

1

2

4

1

2

s

c

a

d

b

t
2 1

1

2

4

1

2

s

c

a

d

b

t
2

1

4

1

2

Introduction Filtering Algorithms Search Tree Computational Results

Resource-based Filtering

(Beasley and Christofides, 1989; Dumitrescu and Boland, 2003; Sellmann et al., 2007)�
�

�
�

if rk(P∗si) + rk
e + rk(P∗jt) > Uk then remove arc e = (i , j)

where P∗si and P∗jt are shortest (k-th resource) paths.

Resource consumption of each arc. Upper resource bound U = 7.

s

c

a

d

b

t

6

3 2 1

1

2

4

1

2

s

c

a

d

b

t 3 2 1

1

2

4

1

2

s

c

a

d

b

t
2 1

1

2

4

1

2

s

c

a

d

b

t
2

1

4

1

2

Introduction Filtering Algorithms Search Tree Computational Results

Resource-based Filtering

(Beasley and Christofides, 1989; Dumitrescu and Boland, 2003; Sellmann et al., 2007)�
�

�
�

if rk(P∗si) + rk
e + rk(P∗jt) > Uk then remove arc e = (i , j)

where P∗si and P∗jt are shortest (k-th resource) paths.

Resource consumption of each arc. Upper resource bound U = 7.

s

c

a

d

b

t

6

3 2 1

1

2

4

1

2

s

c

a

d

b

t 3 2 1

1

2

4

1

2

s

c

a

d

b

t
2 1

1

2

4

1

2

s

c

a

d

b

t
2

1

4

1

2

Introduction Filtering Algorithms Search Tree Computational Results

(Linear) Cost-based Filtering

(Beasley and Christofides, 1989; Dumitrescu and Boland, 2003; Sellmann et al., 2007)�
�

�
�

if w(P∗si) + we + w(P∗jt) > UB then remove arc e = (i , j)
where P∗si and P∗jt are shortest (weighted) paths.

Weight of each arc. Upper bound UB = 7.

s

c

a

d

b

t

6

3 2 1

1

2

4

1

2

s

c

a

d

b

t 3 2 1

1

2

4

1

2

s

c

a

d

b

t
2 1

1

2

4

1

2

s

c

a

d

b

t
2

1

4

1

2

Introduction Filtering Algorithms Search Tree Computational Results

Cost-based Filtering

�
�

�
�

if LB(c(P∗
s e−→t

)) ≥ UB then remove arc e
where P∗

s e−→t
is a shortest path from s to t via arc e.

There are at least three methods to compute such lower bound
(see our poster!)

The most effective is based on a Lagrangian Relaxation

Introduction Filtering Algorithms Search Tree Computational Results

Lagrangian Relaxation: Arc-Flow Formulation

Iti is possible to formulate the following Lagrangian dual:

Φ(α, β) =−
∑
k∈K

αkUk+

+ min
∑
e∈A

(
we +

∑
k∈K

αk r k
e + βte

)
xe + f

(
z
)
−βz

s.t.
∑
e∈δ+

i

xe −
∑

e∈δ−
i

xe = bi ∀i ∈ N

xe ≥ 0 ∀e ∈ A.

This problem decomposes into two subproblems and is solved via a
subgradient optimization algorithm:

1 The x variables define a shortest path problem

2 The z variable defines an unconstrained optimization problem

Introduction Filtering Algorithms Search Tree Computational Results

Cost-based Filtering

�
�

�
�

if LB(c(P∗
s e−→t

)) ≥ UB then remove arc e
where P∗

s e−→t
is a shortest path from s to t via arc e.

There are at least three methods to compute such lower bound
(see our poster!)

The most effective is based on a Lagrangian Relaxation�
�

�
�

c(P∗
s e−→t

) ≥ w̄(P∗
s e−→t

) + min{f
(
z
)
− β̄z}

[with reduced costs w̄e = we +
∑

k∈K ᾱk rk
e + β̄te]

Introduction Filtering Algorithms Search Tree Computational Results

Filter and Dive

presence of a feasible path that improves also the cost of the incumbent, we
update the UB. In case LB � UB we can also prove the optimality.

Algorithm 1 shows our FilterAndDive algorithm that filters out nodes and
arcs while diving for new incumbent solutions. It takes as input a directed graph
G = (N, A), a pair (LB, UB), a pair of forward and backward shortest path
trees (F g, Bg) and an upper limit Ug that depends on the arc-length function
g(·). The filtering algorithm uses three sub-procedures:

– PathCost(F g
i , e, Bg

j): using the tuple of labels stored at each node, it com-
putes the cost of Psi] {i, j}] Pjt without building the path.

– PathFeasible(F g
i , e, Bg

j): using the tuple of labels stored at each node, it
checks if Psi] {i, j}] Pjt is feasible without building the path.

– MakePath(F g
i , e, Bg

j): using the predecessor labels stored in F g
i and Bg

j it
finds and stores the path Psi] {i, j}] Pjt.

While PathCost and PathFeasible require constant time, the time complex-
ity of filtering is linear in the graph size, to which we must add the complexity
of computing the shortest path trees, that amounts to another linear time com-
plexity in the graph size if we deal with acyclic graphs.

Algorithm 1: FilterAndDive(G, LB, UB, F g, Bg, Ug)

Input: G = (N, A) directed graph and distance function g(·)
Input: (LB, UB) lower and upper bounds on the optimal path
Input: F g, Bg forward and backward shortest path tree as function of g(·)
Input: Ug upper bound on the path length as function of g(·)
Output: An optimum path, or updated UB, or a reduced graph

1 foreach i 2 N do
2 if F g

i + Bg
i > Ug then

3 N N \ {i}
4 else
5 foreach e = (i, j) 2 A do
6 if F g

i + g(e) + Bg
j > Ug then

7 A A \ {e}
8 else
9 if PathCost(F g

i , e, Bg
j) < UB^ PathFeasible(F g

i , e, Bg
j) then

10 P ⇤
st MakePath(F g

i , e, Bg
j);

11 Update UB and store P ⇤
st;

12 if LB � UB then
13 return P ⇤

st (that is an optimum path)

14 else
15 A A \ {e}

Introduction Filtering Algorithms Search Tree Computational Results

1 Introduction

2 Filtering Algorithms

3 Search Tree

4 Computational Results

Introduction Filtering Algorithms Search Tree Computational Results

Closing the Duality Gap

After reaching a fix point, if LB < UB then, we apply a near
shortest path enumeration algorithm (Carlyle et al., 2008).

We compute shortest reversed distances for every resource and for
reduced costs

Then we perform a depth-first search from s. When a vertex i is
visited, the algorithm backtracks if

1 for any resource k, the consumption of Psi plus the reversed
(resource) distance to t exceeds Uk

2 the reduced cost of Psi plus the reversed (reduced cost)
distance to t exceeds UB

3 the cost c(Psi) ≥ UB

Introduction Filtering Algorithms Search Tree Computational Results

Computational Results: Stepwise Function

Comparison of filtering algorithms for real life instances: the super
additive function computes the extra allowances due to bus
drivers.

Each row gives the averages over 16 instances, with 7 resources.
∆ is percentage of removed arcs
Gap is UB−Opt

Opt × 100

Graphs Resource Reduced Cost Exact
n m Time ∆ Time ∆ Gap Time

4137 135506 0.77 22.5% 3.12 30.2% 0.0% 75.1
2835 132468 0.59 40.3% 2.35 45.4% 0.0% 30.6
3792 134701 0.92 30.2% 2.87 37.4% 0.0% 69.3

Introduction Filtering Algorithms Search Tree Computational Results

Computational Results: f
(
t(P)

)
= (t(P))2

Time to compute optimal solutions. DIMACS shortest path challenge
instances (acyclic graphs). Average over 10 instances per type. The biggest
instances have 320.000 nodes and 1.280.000 arcs.

Introduction Filtering Algorithms Search Tree Computational Results

Conclusions

We have developed and implemented a Constrained Path
Solver that handles super additive cost functions

The cost-based filtering algorithm is very general and it could
be implemented within a CP solver

We are studying an alternative Lagrangian relaxation of the
problem in order to get stronger lower bounds

Introduction Filtering Algorithms Search Tree Computational Results

Thanks for your attention!

Introduction Filtering Algorithms Search Tree Computational Results

Lagrangian Relaxation: Arc-Flow Formulation

The arc-flow LP relaxation of RCSP with a super additive cost
function f

(
·
)

is:

min
∑
e∈A

wexe + f

(∑
e∈A

texe

)

s.t.
∑

e∈δ+i

xe −
∑

e∈δ−
i

xe = bi =


+1 if i = s
−1 if i = t
0 otherwise

∀i ∈ N

∑
e∈A

rk
e xe ≤ Uk ∀k ∈ K

xe ≥ 0 ∀e ∈ A.

Introduction Filtering Algorithms Search Tree Computational Results

Lagrangian Relaxation: Arc-Flow Formulation

The arc-flow LP relaxation of RCSP with a super additive cost
function f

(
·
)

is:

min
∑
e∈A

wexe + f
(
z
)

(2)

s.t.
∑

e∈δ+i

xe −
∑

e∈δ−
i

xe = bi ∀i ∈ N (3)

multiplier αk ≤ 0 →
∑
e∈A

rk
e xe ≤ Uk ∀k ∈ K (4)

multiplier β ≤ 0 →
∑
e∈A

texe ≤ z (5)

xe ≥ 0 ∀e ∈ A. (6)

Introduction Filtering Algorithms Search Tree Computational Results

*Bibliography
JE Beasley and N. Christofides. An algorithm for the resource constrained

shortest path problem. Networks, 19(4):379–394, 1989.
W.M. Carlyle, J.O. Royset, and R.K. Wood. Lagrangian relaxation and

enumeration for solving constrained shortest-path problems. Networks, 52
(4):256–270, 2008.

I. Dumitrescu and N. Boland. Improved preprocessing, labeling and scaling
algorithms for the weight-constrained shortest path problema. Networks, 42
(3):135–153, 2003.

S.A. Gabriel and D. Bernstein. The traffic equilibrium problem with nonadditive
path costs. Transportation Science, 31(4):337–348, 1997.

M. Sellmann, T. Gellermann, and R. Wright. Cost-based filtering for shorter
path constraints. Constraints, 12:207–238, 2007.

G. Tsaggouris and C. Zaroliagis. Non-additive shortest paths. European
Symposium on Algorithms, pages 822–834, 2004.

	Introduction
	Filtering Algorithms
	Search Tree
	Computational Results

