

Resource Constrained Shortest Path with a Super Additive Objective Function

Stefano Gualandi Università di Pavia, Dipartimento di Matematica Federico Malucelli Politecnico di Milano, Dipartimento di Elettronica e Informazione

October 5, 2012

KORKARYKERKER OQO

[Introduction](#page-1-0)

[Filtering Algorithms](#page-7-0)

[Search Tree](#page-19-0)

Kロトメ部トメミトメミト ミニのQC

Let $G = (N \cup \{s, t\}, A)$ be an (acyclic) digraph with source s and destination t. Every arc has a **weight** w_e and a **time** t_e .

Let K be a set of resources and r_e^k is the consumption of resource k on arc $e \in A$.

A path P_{st} from s to t is **resource feasible** iff at destination:

$$
r^{k}(P_{st}) = \sum_{e \in P_{st}} r_{e}^{k} \leq U^{k}, \quad \forall k \in K
$$

Problem (RCSP)

The Resource Constrained Shortest Path Problem consists in finding a **resource feasible** path in G from s to t of **minimum cost**.

Definition (Path Super Additivity)

\nA (path) cost function is super additive iff:

\n
$$
c(P_1 \cup P_2) \geq c(P_1) + c(P_2)
$$
\n(1)

We consider here a specific type of super additive cost function:

Defin

$$
c(P) = w(P) + f(t(P))
$$

=
$$
\sum_{e \in P} w_e + f\left(\sum_{e \in P} t_e\right)
$$

where $f(\,\cdot\,)$ is a super additive function. Since $w(P)$ is additive, $c(P)$ is also super additive.

KID KØD KED KED E 1990

The extra allowances paid to bus drivers of an Italian trasportation company follow a stepwise cost function

"People value time nonlinearly: small amounts of time have relatively low value whereas large amounts of time are very valuable" (Gabriel and Bernstein, 1997)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$

 \mathbb{B}

 2990

Super additivity invalidates Bellmann's optimality conditions: Two subpaths of an optimal path might be not optimal.

Example: Consider $c(P) = w(P) + f(P)$, with $f(t(P)) = (\sum_{e \in P} t_e)^2$ There are 4 paths:

$$
P_1 = \{s, a, i, b, t\}, \ w(P_1) = 20, \ f(P_1) = 16, \ c(P_1) = 36
$$
\n
$$
P_2 = \{s, c, i, b, t\}, \ w(P_2) = 25, \ f(P_2) = 4, \ c(P_2) = 29
$$
\n
$$
P_3 = \{s, a, i, d, t\}, \ w(P_3) = 25, \ f(P_3) = 4, \ c(P_3) = 29
$$
\n
$$
P_4 = \{s, c, i, d, t\}, \ w(P_4) = 30, \ f(P_4) = 0, \ c(P_4) = 30
$$

Super additivity invalidates Bellmann's optimality conditions: Two subpaths of an optimal path might be not optimal.

Example: Consider $c(P) = w(P) + f(P)$, with $f(t(P)) = (\sum_{e \in P} t_e)^2$ The optimal path $P_2 = \{s, c, i, b, t\}$ is composed of two subpaths:

$$
P_{si} = \{s, c, i\} \text{ with cost } c(P_{si}) = 15 > 14 = c(\{s, a, i\})
$$

$$
P_{it} = \{i, b, t\} \text{ with cost } c(P_{it}) = 14
$$

Remark: In addition our problem has bounded resources (. . . and side constraints)!KORKARYKERKER OQO

[Introduction](#page-1-0)

[Filtering Algorithms](#page-7-0)

[Search Tree](#page-19-0)

We apply both resource-based and cost-based filtering algorithms to remove nodes and arcs as much as possible. **At the same time**, we keep on **updating lower and upper bounds** $(FlITERANDDIVE)$. When updating upper bounds, we can check additional **side constraints**.

After that propagation reaches a fix point, we apply a near shortest path enumeration algorithm.

KORKARYKERKER OQO

(Beasley and Christofides, 1989; Dumitrescu and Boland, 2003; Sellmann et al., 2007)

$$
\begin{cases}\n\text{if } r^k(P_{si}^*) + r_e^k + r^k(P_{jt}^*) > U^k \text{ then remove arc } e = (i, j) \\
\text{where } P_{si}^* \text{ and } P_{jt}^* \text{ are shortest (k-th resource) paths.} \n\end{cases}
$$

Resource consumption of each arc. Upper resource bound $U = 7$.

 $\overline{}$

(Beasley and Christofides, 1989; Dumitrescu and Boland, 2003; Sellmann et al., 2007) 2 1

b

2

a

$$
\begin{cases}\n\text{if } r^k(P_{si}^*) + r_e^k + r^k(P_{jt}^*) > U^k \text{ then remove arc } e = (i, j) \\
\text{where } P_{si}^* \text{ and } P_{jt}^* \text{ are shortest (k-th resource) paths.} \n\end{cases}
$$

Resource consumption of each arc. Upper resource bound $U = 7$.

 $\overline{}$

.
(Beasley and Christofides, 1989; Dumitrescu and Boland, 2003; Sellmann et al., 2007)

 $\sqrt{2\pi}$

 $\overline{}$

$$
\textbf{if } r^k(P_{si}^*) + r_e^k + r^k(P_{jt}^*) > U^k \textbf{ then } \text{ remove arc } e = (i, j) \text{ where } P_{si}^* \textbf{ and } P_{jt}^* \textbf{ are shortest (k-th resource) paths.}
$$

Resource consumption of each arc. Upper resource bound $U = 7$.

(Beasley and Christofides, 1989; Dumitrescu and Boland, 2003; Sellmann et al., 2007) 2 1

b

2

a

 $\sqrt{2\pi}$

 $\overline{}$

if
$$
r^k(P_{si}^*) + r_e^k + r^k(P_{jt}^*) > U^k
$$
 then remove arc $e = (i, j)$ where P_{si}^* and P_{jt}^* are shortest (k-th resource) paths.

Resource consumption of each arc. Upper resource bound $U = 7$.

(Beasley and Christofides, 1989; Dumitrescu and Boland, 2003; Sellmann et al., 2007)

 $\overline{}$

 $\overline{}$

 $\mathsf{if} \,\, w(P_{\mathsf{si}}^*) + w_\mathsf{e} + w(P_{\mathsf{jt}}^*) > \mathsf{UB} \,\, \mathsf{then} \,\,$ remove arc $\mathsf{e} = (i,j)$ where P_{si}^{\ast} and P_{jt}^{\ast} are shortest (weighted) paths.

 $\overline{}$

There are at least three methods to compute such lower bound (see our poster!)

The most effective is based on a **Lagrangian Relaxation**

KORKARYKERKER OQO

Iti is possible to formulate the following Lagrangian dual:

$$
\Phi(\alpha, \beta) = -\sum_{k \in K} \alpha_k U^k +
$$

+ min $\sum_{e \in A} \left(w_e + \sum_{k \in K} \alpha_k r_e^k + \beta t_e \right) x_e + f(z) - \beta z$
s.t. $\sum_{e \in \delta_i^+} x_e - \sum_{e \in \delta_i^-} x_e = b_i \qquad \forall i \in N$
 $x_e \ge 0 \qquad \forall e \in A.$

This problem decomposes into two subproblems and is solved via a **subgradient optimization algorithm**:

- **1** The x variables define a shortest path problem
- **2** The z variable defines an *unconstrained optimization problem*

if LB(c(P ∗ $\binom{e}{s-t}$)) \geq UB **then** remove arc *e* where P^* $\int_{s \to t}^*$ is a shortest path from s to t via arc e .

 $\sqrt{2}$

✖

 $\overline{}$

There are at least three methods to compute such lower bound (see our poster!)

The most effective is based on a **Lagrangian Relaxation**

$$
c(P_{s \to t}^*) \ge \bar{w}(P_{s \to t}^*) + \min\{f(z) - \bar{\beta}z\}
$$

[with reduced costs $\bar{w}_e = w_e + \sum_{k \in K} \bar{\alpha}_k r_e^k + \bar{\beta}t_e]$]

Input: $G = (N, A)$ directed graph and distance function $g(.)$ **Input:** (LB, UB) lower and upper bounds on the optimal path **Input**: F^g , B^g forward and backward shortest path tree as function of $g(.)$ **Input:** U^g upper bound on the path length as function of $q(.)$ **Output:** An optimum path, or updated UB , or a reduced graph 1 foreach $i \in N$ do
2 | if $F^g + B^g > 0$ $\mathtt{2} \quad | \quad \text{if} \; F_i^g + B_i^g > U^g \; \text{then}$ $\mathbf{3} \mid \mid N \leftarrow N \setminus \{i\}$ 4 else 5 **for each** $e = (i, j) \in A$ do
6 **if** $F^g + q(e) + B^g > 0$ $\begin{array}{|c|c|c|c|}\hline \textbf{6} & & \textbf{if} & F_i^g+g(e)+B_j^g>U^g\textbf{ then} \ \hline \end{array}$ 7 $|$ $|$ $|$ $|$ $A \leftarrow A \setminus \{e\}$ \vert \vert \vert \vert else $\quad \begin{array}{|c|c|c|c|}\hline \text{ } & \text{ } & \text{ } \text{if} \text{PATHCOST}(F_i^g, e, B_j^g) < UB \land \text{PATHFeASIBLE}(F_i^g, e, B_j^g) \text{ then} \hline \end{array}$ $\begin{array}{|c|c|c|c|c|}\hline \textbf{10} & & P_{st}^* \leftarrow \text{MAKEPATH}(\mathit{F}_{i}^{g},e,B_{j}^{g}); \\\hline \end{array}$ 11 | | | Update UB and store P_{st}^* ; 12 | | | if $LB \ge UB$ then 13 | | | | | | return P_{st}^* (that is an optimum path) 14 \vert \vert \vert \vert \vert else 15 $\vert \vert \vert \vert \vert \vert$ $\vert A \leftarrow A \setminus \{e\}$

 Ω

[Introduction](#page-1-0)

[Filtering Algorithms](#page-7-0)

[Search Tree](#page-19-0)

[Computational Results](#page-21-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

After reaching a fix point, if LB *<* UB then, we apply a **near shortest path** enumeration algorithm (Carlyle et al., 2008).

We compute shortest reversed distances for every resource and for reduced costs

Then we perform a depth-first search from s. When a vertex *i* is visited, the algorithm backtracks if

1 for any resource k, the consumption of P_{si} plus the reversed (resource) distance to t exceeds U^k

KORKAR KERKER SAGA

- **2** the reduced cost of P_{si} plus the reversed (reduced cost) distance to t exceeds UB
- **3** the cost $c(P_{si}) \geq UB$

Comparison of filtering algorithms for real life instances: the super additive function computes the **extra allowances** due to bus drivers.

Each row gives the averages over 16 instances, with 7 resources.

 \bullet Δ is percentage of removed arcs

• Gap is
$$
\frac{UB - Opt}{Opt} \times 100
$$

Time to compute **optimal solutions**. DIMACS shortest path challenge instances (acyclic graphs). Average over 10 instances per type. The biggest instances have 320.000 nodes and 1.280.000 arcs.

KORK EXTERNE PROVIDE

- We have developed and implemented a Constrained Path Solver that handles super additive cost functions
- The cost-based filtering algorithm is very general and it could be implemented within a CP solver
- We are studying an alternative Lagrangian relaxation of the problem in order to get stronger lower bounds

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Thanks for your attention!

The arc-flow LP relaxation of RCSP with a super additive cost function $f(\,\cdot\,)$ is:

$$
\begin{aligned}\n\min \quad & \sum_{e \in A} w_e x_e + f\left(\sum_{e \in A} t_e x_e\right) \\
\text{s.t.} \quad & \sum_{e \in \delta_i^+} x_e - \sum_{e \in \delta_i^-} x_e = b_i = \begin{cases} +1 & \text{if } i = s \\
-1 & \text{if } i = t \\
0 & \text{otherwise}\n\end{cases} \quad \forall i \in N \\
& \sum_{e \in A} r_e^k x_e \le U^k \quad \forall k \in K \\
& x_e \ge 0 \quad \forall e \in A.\n\end{aligned}
$$

KO K K Ø K K E K K E K V K K K K K K K K K

The arc-flow LP relaxation of RCSP with a super additive cost function $f(\,\cdot\,)$ is:

$$
\min \quad \sum_{e \in A} w_e x_e + f(z) \tag{2}
$$
\n
$$
\text{s.t.} \quad \sum_{e \in \delta_i^+} x_e - \sum_{e \in \delta_i^-} x_e = b_i \quad \forall i \in N \tag{3}
$$
\n
$$
\text{multiplier } \alpha_k \le 0 \quad \to \quad \sum_{e \in A} r_e^k x_e \le U^k \qquad \forall k \in K \tag{4}
$$
\n
$$
\text{multiplier } \beta \le 0 \quad \to \quad \sum_{e \in A} t_e x_e \le z \tag{5}
$$
\n
$$
x_e \ge 0 \qquad \forall e \in A. \tag{6}
$$

Kロトメ部トメミトメミト ミニのRC

*Bibliography

- JE Beasley and N. Christofides. An algorithm for the resource constrained shortest path problem. Networks, 19(4):379–394, 1989.
- W.M. Carlyle, J.O. Royset, and R.K. Wood. Lagrangian relaxation and enumeration for solving constrained shortest-path problems. Networks, 52 (4):256–270, 2008.
- I. Dumitrescu and N. Boland. Improved preprocessing, labeling and scaling algorithms for the weight-constrained shortest path problema. Networks, 42 (3):135–153, 2003.
- S.A. Gabriel and D. Bernstein. The traffic equilibrium problem with nonadditive path costs. Transportation Science, 31(4):337-348, 1997.

- M. Sellmann, T. Gellermann, and R. Wright. Cost-based filtering for shorter path constraints. Constraints, 12:207-238, 2007.
- G. Tsaggouris and C. Zaroliagis. Non-additive shortest paths. European Symposium on Algorithms, pages 822–834, 2004.