## A Pseudo-Boolean Set Covering Machine

Pascal Germain, Sébastien Giguère, Jean-Francis Roy, Brice Zirakiza, François Laviolette, and Claude-Guy Quimper

> GRAAL (Université Laval, Québec city)

> > October 9, 2012

**1** Binary classification and Machine learning (ML)

**2** Set covering machines (SCM)

**3** Using a CP approach to answer a ML question

4 Empirical results

# Binary Classification and Machine Learning (ML)

#### Example

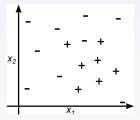
Each example  $(\mathbf{x}, y)$  is a **description-label pair**:

- The **description**  $\mathbf{x} \in \mathbb{R}^n$  is a feature vector.
- The label  $y \in \{0,1\}$  is a boolean value.

#### Dataset

A dataset S is a **collection of several examples**.

$$S \stackrel{\text{def}}{=} \{ (\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_m, y_m) \} \}$$



# Binary Classification and Machine Learning (ML)

## Learning Algorithm $A(S) \rightarrow h$

The goal of a learning algorithm is to **study a dataset** and **build a classifier**.



## Classifier $h(\mathbf{x}) \rightarrow y$

A classifier is a function that **takes a description** of an example as input, and **outputs a label** prediction.



# Set Covering Machines (SCM) [Marchand and Shawe-Taylor, 2002]

### Data-Dependent Ball

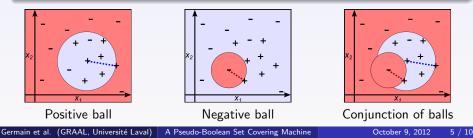
A ball  $g_{i,j}$  is defined by a **center**  $(\mathbf{x}_i, y_i) \in S$  and a **border**  $(\mathbf{x}_j, y_j) \in S$ .

$$g_{i,j}(\mathbf{x}) \stackrel{\text{def}}{=} \begin{cases} y_i \text{ if } \|\mathbf{x} - \mathbf{x}_i\| \le \|\mathbf{x}_i - \mathbf{x}_j\| \\ \neg y_i \text{ otherwise.} \end{cases}$$

#### Conjunction of Data-Dependent Balls

Given a set of balls  $\ensuremath{\mathcal{B}}$  , the SCM classifier is

$$\mathsf{h}_{\mathcal{B}}(\mathsf{x}) \; \stackrel{\mathrm{def}}{=} \; \bigwedge_{g_{i,j} \in \mathcal{B}} g_{i,j}(\mathsf{x}) \, .$$



### Sample Compression Theory

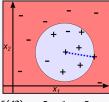
The theory suggests to **minimize the following cost function** :

 $f(\mathcal{B}) \stackrel{\text{def}}{=} 2 \times \text{[number of balls]} + \text{[number of training errors]}$ 

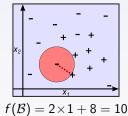
### SCM is a Greedy Algorithm

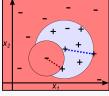
The SCM is a fast algorithm **driven by a parameterized heuristic**.

- At each greedy step, the heuristic chooses a ball to add to the conjunction  $\mathcal{B}$ .
- The search is restarted several times with different heuristic parameters.
- The cost function  $f(\mathcal{B})$  selects the best conjunction among all restarts.



 $f(B) = 2 \times 1 + 2 = 4$ 





 $f(B) = 2 \times 2 + 1 = 5$ 

Germain et al. (GRAAL, Université Laval) A Pseudo-Boolean Set Covering Machine October 9, 2012 6 / 10

### How Good is the Greedy Strategy?

How far to the optimal  $f(\mathcal{B}^*)$  is the solution found by the SCM?

## Finding the global minimum is hard

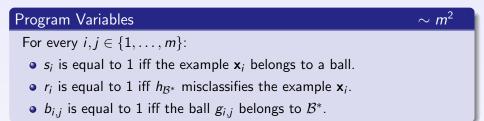
Finding the optimal  $f(\mathcal{B}^*)$  is a **combinatorial NP-hard problem**.

### CP to the rescue!

We designed a **Pseudo-Boolean program** that directly minimizes f(B) and compare the solution to the one obtained by the SCM.

# Pseudo-Boolean Set Covering Machine

Given a dataset  $S = \{ (\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_m, y_m) \}$  of *m* examples.  $f(\mathcal{B}^*) = \min \sum_{i=1}^m (r_i + s_i)$  subject to  $5 \times m$  linear constraints.



We compare the original SCM to three pseudo-Boolean solvers:

- PWBO, *Lynce (2011)*
- BSOLO, Vasco Manquinho and Marques-Silva (2006)
- SCIP, Achterberg (2004)

## Empirical results (common benchmarks in Machine Learning community)

| Dataset  |      | SCM           |      | PWBO |            | SCIP          |            | BSOLO         |            |
|----------|------|---------------|------|------|------------|---------------|------------|---------------|------------|
| name     | size | $\mathcal{F}$ | time | F    | time       | $\mathcal{F}$ | time       | $\mathcal{F}$ | time       |
| breastw  | 25   | 2             | 0.04 | 2    | 0.03       | 2             | 0.71       | 2             | 0.05       |
|          | 50   | 2             | 0.07 | 2    | 0.06       | 2             | 3.7        | 2             | 0.64       |
|          | 100  | 2             | 0.16 | 2    | 0.43       | 2             | 0.05       | 2             | 20         |
| bupa     | 25   | 8             | 0.31 | 7    | 0.31       | 7             | 4.1        | 7             | 0.64       |
|          | 50   | 14            | 1.32 | 12   | 589        | 12            | 47         | 12            | 989        |
|          | 100  | 27            | 11   | 32   | <b>T/O</b> | 30            | <b>T/O</b> | 34            | <b>T/O</b> |
| credit   | 25   | 4             | 0.11 | 4    | 0.08       | 4             | 2          | 4             | 0.22       |
|          | 50   | 6             | 0.25 | 5    | 9.3        | 5             | 21         | 5             | 30.1       |
|          | 100  | 12            | 1.3  | 11   | <b>T/O</b> | 10            | 798        | 18            | <b>T/O</b> |
| glass    | 25   | 5             | 0.11 | 5    | 0.03       | 5             | 12         | 5             | 0.2        |
|          | 50   | 9             | 0.49 | 8    | 10.3       | 8             | 35         | 8             | 28         |
|          | 100  | 18            | 2.9  | 17   | <b>T/O</b> | 17            | T/0        | 22            | <b>T/O</b> |
| haberman | 25   | 5             | 0.17 | 5    | 0.03       | 5             | 3.6        | 5             | 0.18       |
|          | 50   | 10            | 0.94 | 10   | 34         | 10            | 30         | 10            | 65         |
|          | 100  | 21            | 4.5  | 20   | <b>T/O</b> | 20            | T/0        | 23            | <b>T/O</b> |
| pima     | 25   | 8             | 0.33 | 8    | 0.36       | 8             | 4          | 8             | 0.94       |
|          | 50   | 15            | 0.9  | 13   | 2204       | 13            | 37         | 13            | 1985       |
|          | 100  | 25            | 7.4  | 26   | <b>T/O</b> | 23            | <b>T/O</b> | 30            | <b>T/O</b> |
| USvotes  | 25   | 3             | 0.07 | 3    | 0.011      | 3             | 0.21       | 3             | 0.08       |
|          | 50   | 5             | 0.17 | 4    | 0.141      | 4             | 2.4        | 4             | 1.1        |
|          | 100  | 6             | 0.35 | 4    | 1.21       | 4             | 100        | 4             | 80         |

Germain et al. (GRAAL, Université Laval) A Pseudo-Boolean Set Covering Machine

9 / 10

## Conclusion

#### Thanks to pseudo-Boolean techniques

- For the first time, we show empirically the effectiveness of the SCM.
- This is a very surprising result given the **simplicity** and the **low complexity** of the greedy algorithm.

#### Final word from Anonymous Reviewer #3

This is one of those disconcerting results that show that simple, low-complexity algorithms can be enough to solve combinatorially hard problems that appear to need heavier-weight approaches.

# Conclusion

#### Thanks to pseudo-Boolean techniques

- For the first time, we show empirically the **effectiveness of the SCM**.
- This is a very surprising result given the **simplicity** and the **low complexity** of the greedy algorithm.

#### Final word from Anonymous Reviewer #3

This is one of those disconcerting results that show that simple, low-complexity algorithms can be enough to solve combinatorially hard problems that appear to need heavier-weight approaches.