A Pseudo-Boolean Set Covering Machine

Pascal Germain, Sébastien Giguère, Jean-Francis Roy, Brice Zirakiza, François Laviolette, and Claude-Guy Quimper

> GRAAL (Université Laval, Québec city)

> > October 9, 2012

1 [Binary classification and Machine learning \(ML\)](#page-2-0)

2 [Set covering machines \(SCM\)](#page-4-0)

3 [Using a CP approach to answer a ML question](#page-6-0)

4 [Empirical results](#page-8-0)

Binary Classification and Machine Learning (ML)

Example

Each example (x, y) is a description-label pair:

- The **description** $\mathbf{x} \in \mathbb{R}^n$ is a feature vector.
- The label $y \in \{0, 1\}$ is a boolean value.

Dataset

A dataset S is a collection of several examples.

$$
S \stackrel{\text{def}}{=} \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \ldots, (\mathbf{x}_m, y_m)\}
$$

Binary Classification and Machine Learning (ML)

Learning Algorithm $A(S) \rightarrow h$

The goal of a learning algorithm is to study a dataset and build a classifier.

Classifier $h(\mathbf{x}) \rightarrow \mathbf{y}$

A classifier is a function that **takes a description** of an example as input, and outputs a label prediction.

Set Covering Machines (SCM) [Marchand and Shawe-Taylor, 2002]

Data-Dependent Ball

A ball $g_{i,j}$ is defined by a $\textbf{center}(\mathbf{x}_i, y_i) \in S$ and a $\textbf{border}(\mathbf{x}_j, y_j) \in S$.

$$
g_{i,j}(\mathbf{x}) \quad \stackrel{\text{def}}{=} \quad \begin{cases} y_i & \text{if } \|\mathbf{x} - \mathbf{x}_i\| \leq \|\mathbf{x}_i - \mathbf{x}_j\| \\ \neg y_i & \text{otherwise.} \end{cases}
$$

Conjunction of Data-Dependent Balls

Given a set of balls B , the SCM classifier is

$$
\mathbf{h}_{\mathcal{B}}(\mathbf{x}) \stackrel{\text{def}}{=} \bigwedge_{\mathcal{B}i,j \in \mathcal{B}} \mathcal{B}_{i,j}(\mathbf{x}).
$$

Sample Compression Theory

The theory suggests to minimize the following cost function :

$$
f(\mathcal{B}) \stackrel{\text{def}}{=} 2 \times \boxed{\text{number of balls}}
$$

 $+$ number of training errors

SCM is a Greedy Algorithm

The SCM is a fast algorithm driven by a parameterized heuristic.

- \bullet At each greedy step, the heuristic chooses a ball to add to the conjunction β .
- **•** The search is restarted several times with different heuristic parameters.
- \bullet The cost function $f(\mathcal{B})$ selects the best conjunction among all restarts.

$$
f(\mathcal{B}) = 2 \times 1 + 2 = 4
$$
 $f(\mathcal{B}) = 2 \times 1 + 8 = 10$ $f(\mathcal{B}) = 2 \times 2 + 1 = 5$

Germain et al. (GRAAL, Université Laval) [A Pseudo-Boolean Set Covering Machine](#page-0-0) **Communist Constantine 1, 2012** 6 / 10

How Good is the Greedy Strategy?

How far to the optimal $f(B^*)$ is the solution found by the SCM?

Finding the global minimum is hard

Finding the optimal $f(\mathcal{B}^*)$ is a combinatorial NP-hard problem.

CP to the rescue!

We designed a Pseudo-Boolean program that directly minimizes $f(\mathcal{B})$ and compare the solution to the one obtained by the SCM.

Pseudo-Boolean Set Covering Machine

Given a dataset
$$
S = \{ (\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_m, y_m) \}
$$
 of *m* examples.

$$
f(\mathcal{B}^*) = \min \sum_{i=1}^m (r_i + s_i) \quad \text{subject to } 5 \times m \text{ linear constraints.}
$$

Program Variables $\sim m^2$

For every $i, j \in \{1, \ldots, m\}$:

- s_i is equal to 1 iff the example \mathbf{x}_i belongs to a ball.
- r_i is equal to 1 iff $h_{\mathcal{B}^*}$ misclassifies the example \mathbf{x}_i .
- $b_{i,j}$ is equal to 1 iff the ball $g_{i,j}$ belongs to \mathcal{B}^* .

We compare the original SCM to three pseudo-Boolean solvers:

- \bullet PWBO, Lynce (2011)
- BSOLO, Vasco Manquinho and Marques-Silva (2006)
- SCIP, Achterberg (2004)

Empirical results (common benchmarks in Machine Learning community)

Conclusion

Thanks to pseudo-Boolean techniques

- For the first time, we show empirically the **effectiveness of** the SCM.
- This is a very surprising result given the **simplicity** and the low complexity of the greedy algorithm.

Conclusion

Thanks to pseudo-Boolean techniques

- For the first time, we show empirically the **effectiveness of** the SCM.
- This is a very surprising result given the **simplicity** and the low complexity of the greedy algorithm.

Final word from Anonymous Reviewer $#3$

This is one of those disconcerting results that show that simple, low-complexity algorithms can be enough to solve combinatorially hard problems that appear to need heavier-weight approaches.