

The SeqBin Constraint Revisited

George Katsirelos, Nina Narodytska and Toby Walsh

UBIA, INRA, and NICTA and University of NSW



Australian Research Council

Outline

Outline

- 1. The SeqBin constraint
- 2. Related work

3. New DC filtering algorithm

The SeqBin constraint [IJCAI'11,Petit et al.]

Motivation

SeqBin is a meta-constraint useful for (over-constrained) scheduling and rostering problems

SeqBin is a meta-constraint useful for (over-constrained) scheduling and rostering problems

- Change
- Smooth
- IncreasingNValue

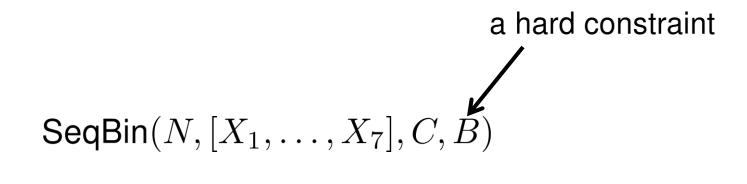
$$X_1, X_2, X_3, X_4, X_5, X_6, X_7$$

SeqBin
$$(N, [X_1, \ldots, X_7], C, B)$$

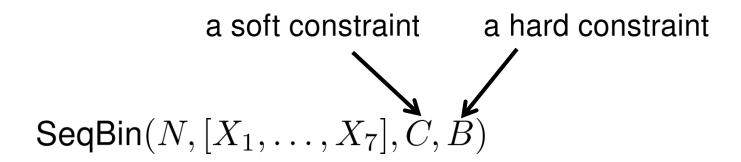
$$X_1, X_2, X_3, X_4, X_5, X_6, X_7$$

a hard constraint $\mathsf{SeqBin}(N,[X_1,\ldots,X_7],C,B)$

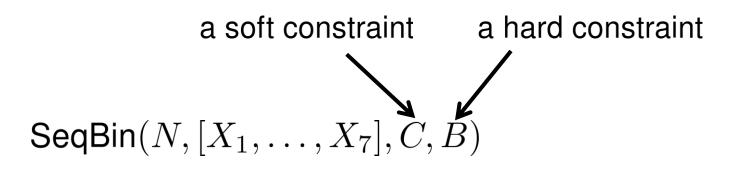
 $X_1, X_2, X_3, X_4, X_5, X_6, X_7$



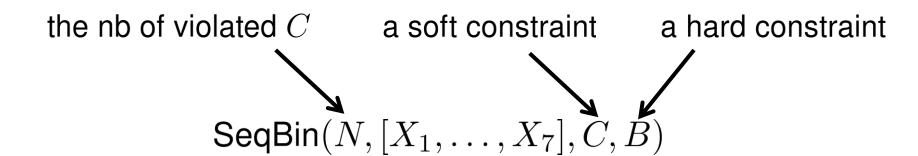
$$X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}$$

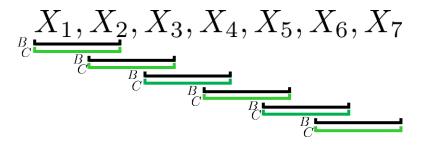


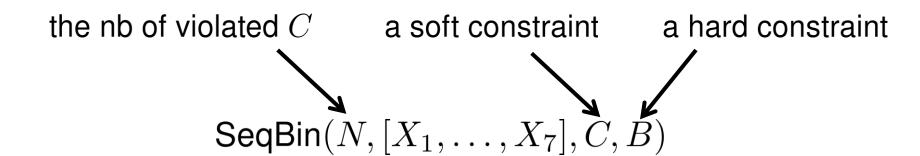
$$X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}$$

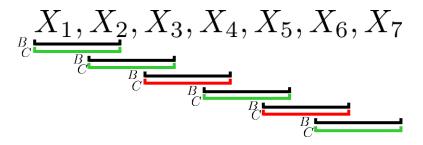


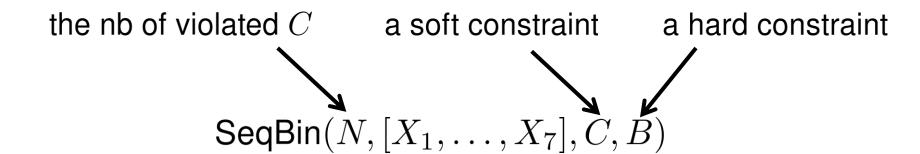
$$X_1, X_2, X_3, X_4, X_5, X_6, X_7$$











holds iff

- 1. $B(X_i, X_{i+1})$ holds along $[X_1, \ldots, X_n]$
- 2. c(X) + 1 = N, where c(X) is the nb of violated $C(X_i, X_{i+1})$ along $[X_1, \dots, X_n]$.

SeqBin
$$(N = 3, [X_1, ..., X_7], C = \{(1, 1)\}, B = True)$$

$${\sf SeqBin}(N=3,[X_1,\ldots,X_7],C=\{(1,1)\},B={\sf True})$$
 Variables X₁ X₂ X₃ X₄ X₅ X₆ X₇

SeqBin
$$(N = 3, [X_1, \dots, X_7], C = \{(1, 1)\}, B = True)$$

Variables

Domains

 X_1

1 0

2

(1)

 X_4

1 0

〈5

1

<u>/1</u>

SeqBin
$$(N = 3, [X_1, \dots, X_7], C = \{(1, 1)\}, B = True)$$

Variables

Domains

 X_1

(1

2

 X_3

1

 X_5

①

(1)

SeqBin
$$(N = 3, [X_1, \dots, X_7], C = \{(1, 1)\}, B \stackrel{\checkmark}{=} \text{True})$$

Variables

Variables

SeqBin(
$$N = 3, [X_1, \dots, X_7], C = \{(1,1)\}, B \stackrel{\checkmark}{=} \text{True}$$
)

 $X_1 \quad X_2 \quad X_3 \quad X_4 \quad X_5 \quad X_6 \quad X_7$
 $X_1 \quad X_2 \quad X_3 \quad X_4 \quad X_5 \quad X_6 \quad X_7$
 $X_1 \quad X_2 \quad X_3 \quad X_4 \quad X_5 \quad X_6 \quad X_7$

SeqBin
$$(N = 3, [X_1, \dots, X_7], C = \{(1, 1)\}, B \stackrel{\checkmark}{=} \text{True})$$

Variables

$$c(X) = 0$$

SeqBin
$$(N = 3, [X_1, \dots, X_7], C = \{(1, 1)\}, B = True)$$

Variables

Domains

 X_1

1

,

1

 X_4

1

 X_6

^7 ①

SeqBin
$$(N = 3, [X_1, \dots, X_7], C = \{(1, 1)\}, B \stackrel{\checkmark}{=} \text{True})$$

Variables

Domains

 X_1

1

2

1

>

100

 X_5

1

 X_7

Variables

SeqBin(
$$N = 3, [X_1, \dots, X_7], C = \{(1, 1)\}, B \stackrel{\checkmark}{=} \text{True}$$
)

 $X_1 \quad X_2 \quad X_3 \quad X_4 \quad X_5 \quad X_6 \quad X_7$
 $X_1 \quad X_2 \quad X_3 \quad X_4 \quad X_5 \quad X_6 \quad X_7$
 $X_1 \quad X_2 \quad X_3 \quad X_4 \quad X_5 \quad X_6 \quad X_7$

Variables

SeqBin(
$$N = 3, [X_1, \dots, X_7], C = \{(1, 1)\}, B \stackrel{\checkmark}{=} \text{True}$$
)

 $X_1 \quad X_2 \quad X_3 \quad X_4 \quad X_5 \quad X_6 \quad X_7$
 $X_1 \quad X_2 \quad X_3 \quad X_4 \quad X_5 \quad X_6 \quad X_7$
 $X_1 \quad X_2 \quad X_3 \quad X_4 \quad X_5 \quad X_6 \quad X_7$

$$c(X) = 2$$

Variables

SeqBin(
$$N = 3, [X_1, \dots, X_7], C = \{(1,1)\}, B \stackrel{\checkmark}{=} \text{True}$$
)

 $X_1 \quad X_2 \quad X_3 \quad X_4 \quad X_5 \quad X_6 \quad X_7$
 $X_1 \quad X_2 \quad X_3 \quad X_4 \quad X_5 \quad X_6 \quad X_7$
 $X_1 \quad X_2 \quad X_3 \quad X_4 \quad X_5 \quad X_6 \quad X_7$

$$c(X) + 1 = 2 + 1 = N$$

Disentailment detection

Is there a solution of SeqBin?

The SeqBin constraint (equivalent representation)

SeqBin
$$(N, [X_1, ..., X_7], C = \{(1, 1)\}, B = True)$$

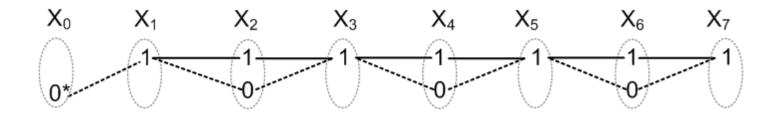
- X_1
- 1
- X_2
- 1
- X_3
- 1
- X_4
- $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$

- X_6
- $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$
- 1

SeqBin
$$(N, [X_1, \dots, X_7], C = \{(1, 1)\}, B = \text{True})$$

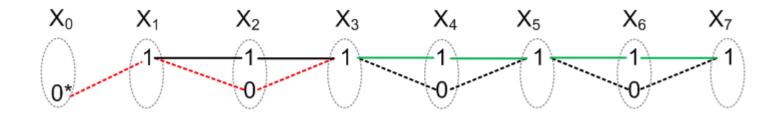
- X_0
- X_1
- $\binom{1}{1}$
- X_2
- 10
- X_3
- X_4
- 1
- 1
- 1
- (1)

SeqBin
$$(N, [X_1, \dots, X_7], C = \{(1, 1)\}, B = \text{True})$$



----- weight 1 —— weight 0

SeqBin
$$(N, [X_1, \dots, X_7], C = \{(1, 1)\}, B = \text{True})$$



----- weight 1 —— weight 0

cost of the path is 3

There exists a bijection between assignments X of cost s that satisfy B and paths in the graph G(V,E) of cost s+1.

SeqBin

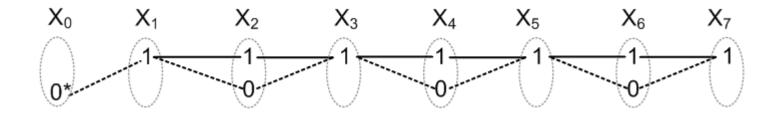
Is there a path in G with cost equal to N?

Straightforward approach

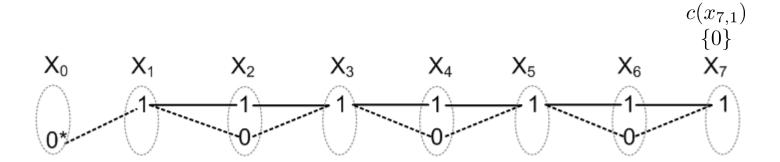
Dynamic programming based DC algorithm in $O(n^2d^2)$

For each vertex in G we compute costs of all possible paths from the sink node.

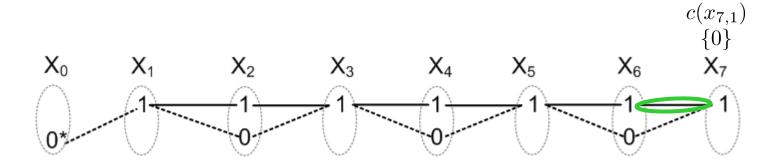
SeqBin
$$(N, [X_1, \dots, X_7], C = \{(1, 1)\}, B = \text{True})$$



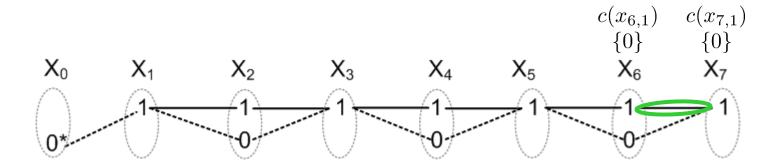
SeqBin
$$(N, [X_1, \dots, X_7], C = \{(1, 1)\}, B = \text{True})$$



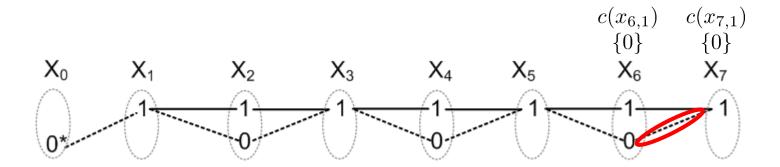
SeqBin
$$(N, [X_1, \dots, X_7], C = \{(1, 1)\}, B = \text{True})$$



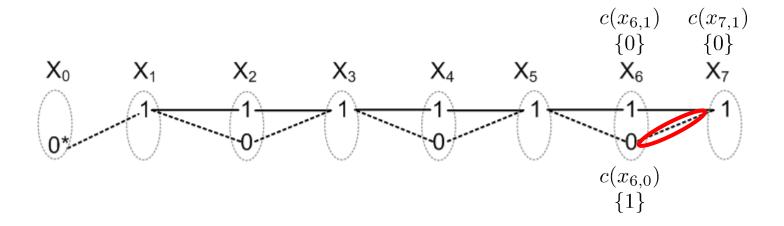
SeqBin
$$(N, [X_1, \dots, X_7], C = \{(1, 1)\}, B = \text{True})$$



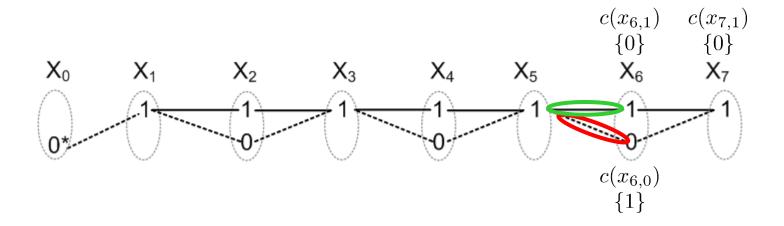
SeqBin
$$(N, [X_1, \dots, X_7], C = \{(1, 1)\}, B = \text{True})$$



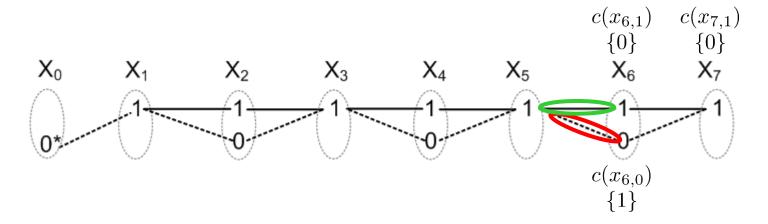
SeqBin
$$(N, [X_1, \dots, X_7], C = \{(1, 1)\}, B = \text{True})$$



SeqBin
$$(N, [X_1, \dots, X_7], C = \{(1, 1)\}, B = \text{True})$$

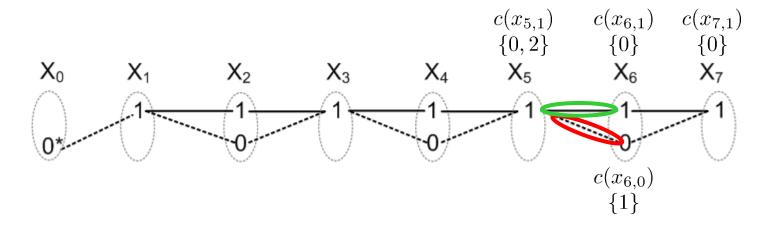


SeqBin
$$(N, [X_1, \dots, X_7], C = \{(1, 1)\}, B = True)$$

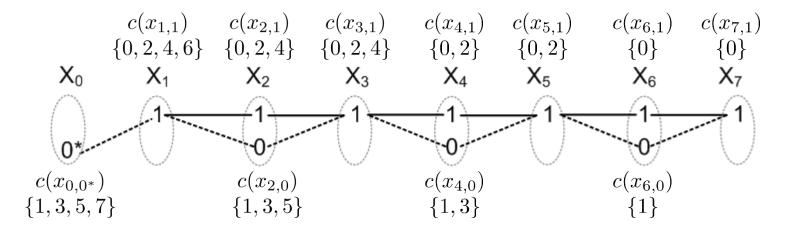


$$c(x_{5,1}) = (c(x_{6,1}) \uplus 0) \cup (c(x_{6,0}) \uplus 1)$$

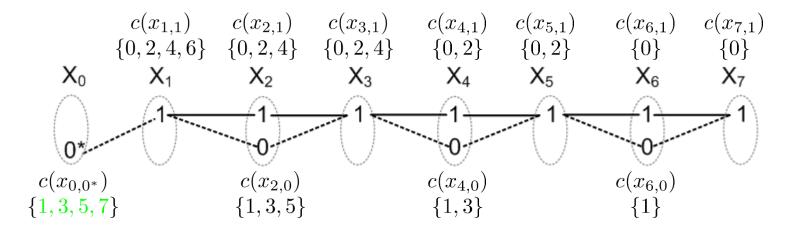
SeqBin
$$(N, [X_1, \dots, X_7], C = \{(1, 1)\}, B = \text{True})$$



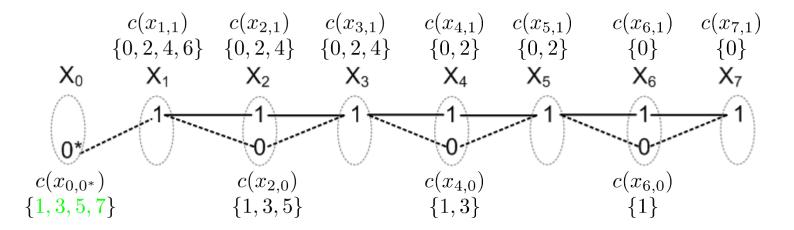
SeqBin
$$(N, [X_1, \dots, X_7], C = \{(1, 1)\}, B = \text{True})$$



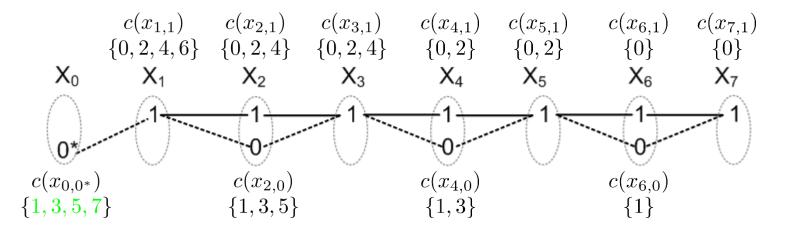
SeqBin
$$(N, [X_1, \dots, X_7], C = \{(1, 1)\}, B = \text{True})$$



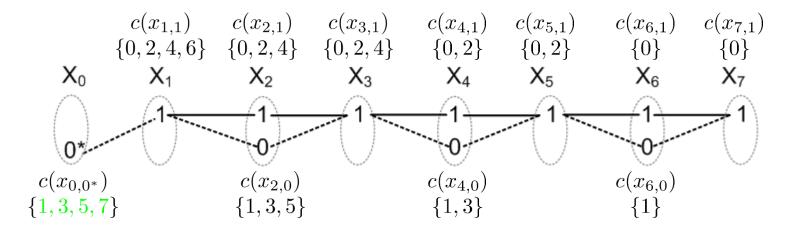
SeqBin
$$(N = 3, [X_1, ..., X_7], C = \{(1, 1)\}, B = True)$$



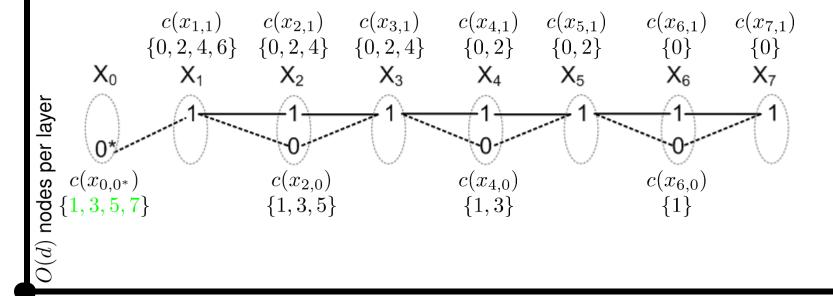
SeqBin
$$(N = 4, [X_1, \dots, X_7], C = \{(1, 1)\}, B = True)$$



SeqBin
$$(N = 4, [X_1, \dots, X_7], C = \{(1, 1)\}, B = True)$$

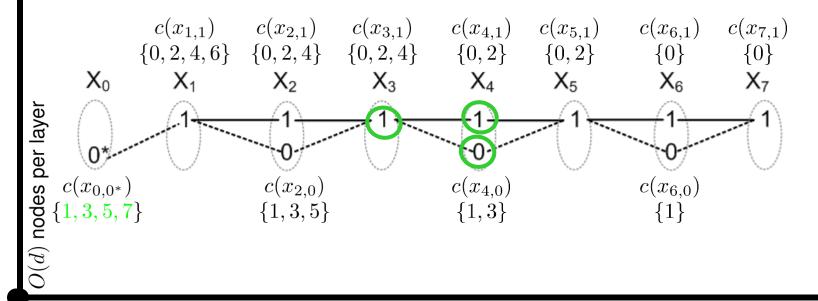


SeqBin
$$(N = 4, [X_1, ..., X_7], C = \{(1, 1)\}, B = True)$$



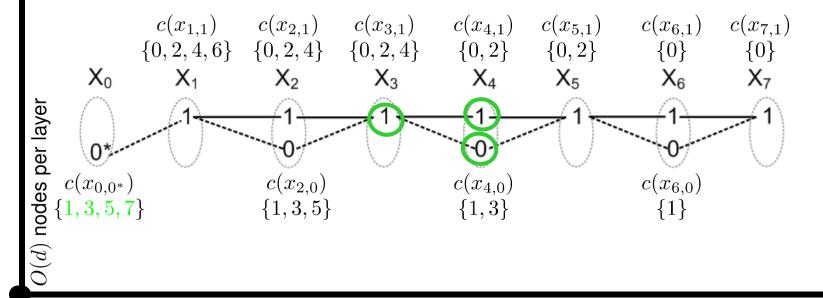
O(n) layers

SeqBin
$$(N = 4, [X_1, ..., X_7], C = \{(1, 1)\}, B = True)$$



$$c(x_{3,1}) = (c(x_{4,1}) \uplus 0) \cup (c(x_{4,0}) \uplus 1)$$
 $O(nd)$

SeqBin
$$(N = 4, [X_1, ..., X_7], C = \{(1, 1)\}, B = True)$$



$$c(x_{i,j}) = \bigcup_{v \in D(X_{i+1})}^{O(n) ext{ layers}} (c(x_{i+1,v}) \uplus w(j,v)) \quad {\color{red}O(nd)}$$

Related work [IJCAI'11,Petit et al.]

$$\mathsf{SeqBin}(N,[X_1,\ldots,X_7],C,B)$$

the monotone constraint

Dynamic programming based filtering algorithm in $O(nd^2)$

$$c(x_{i,j}) = \bigcup_{v \in D(X_{i+1})} \left(c(x_{i+1,v}) \uplus w(j,v) \right) \quad O(nd)$$

does not detect bounds disentailment
 observed independently by Petit et al., TR'2011

- does not detect bounds disentailment observed independently by Petit et al., TR'2011
- not idempotent (i.e. $f(f(X)) \neq f(X)$)

Main problem: if
$$B$$
 is monotone then $c(x_{i,j}) = [l,u]$

Main problem: if B is monotone then $c(x_{i,j}) = [l, u]$

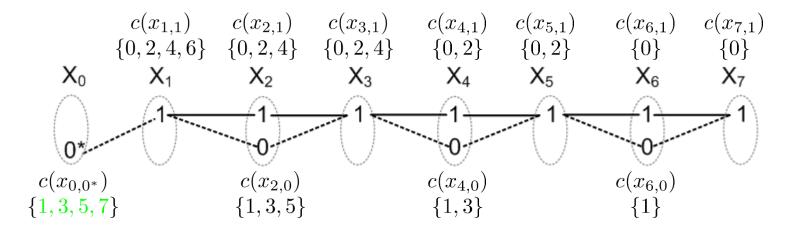
$$c(x_{i,j}) = \bigcup_{v \in D(X_{i+1})} (c(x_{i+1,v}) \uplus w(j,v)) \ O(d)$$

Main problem: if B is monotone then

$$c(x_{i,j}) = [l, u]$$

$$c(x_{i,j}) = \bigcup_{v \in D(X_{i+1})} (c(x_{i+1,v}) \uplus w(j,v)) \ O(d)$$

SeqBin
$$(N, [X_1, \dots, X_7], C = \{(1, 1)\}, B = \text{True})$$



Our contribution: new DC filtering algorithm in $O(nd^2)$

New DC propagator

Goal: improve DP when ${\cal B}$ is monotone

New DC propagator

$$c(x_{i,j}) = \bigcup_{v \in D(X_{i+1})} (c(x_{i+1,v}) \uplus w(j,v)) \quad O(nd)$$

Cost properties

 $c(x_{i,j})$ is not an interval

Cost properties

 $c(x_{i,j})$ is not even an 'almost' interval igotimes(unbounded number of holes!)

Cost properties

 $c(x_{i,j})$ has a special structure!

 $c(x_{i,j})$ is a set of one of the following two forms:

zipper:

 $c(x_{i,j})$ is a set of one of the following two forms:

zipper: $\{2, 4, 6, 8\}$.

 $c(x_{i,j})$ is a set of one of the following two forms:

zipper: $\{2, 4, 6, 8\}$.

i·zipper:

 $c(x_{i,j})$ is a set of one of the following two forms:

zipper: $\{2, 4, 6, 8\}$.

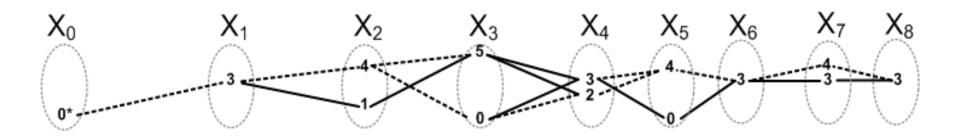
i-zipper: [4, 11]

 $c(x_{i,j})$ is a set of one of the following two forms:

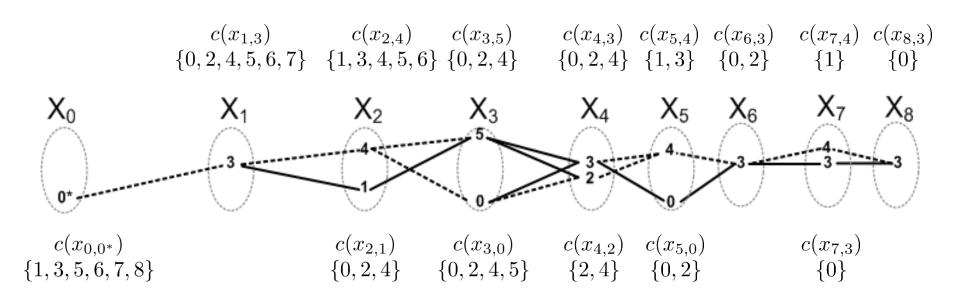
zipper: $\{2, 4, 6, 8\}$.

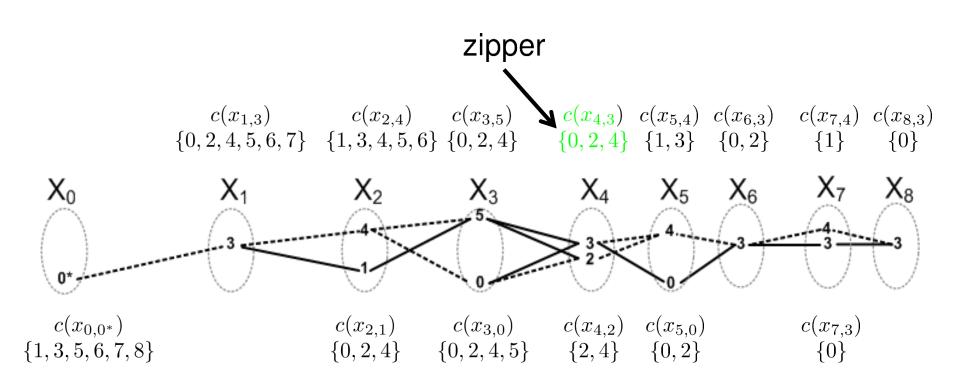
i-zipper: $\{2,4\} \cup [4,11] \cup \{11,13,15\}$

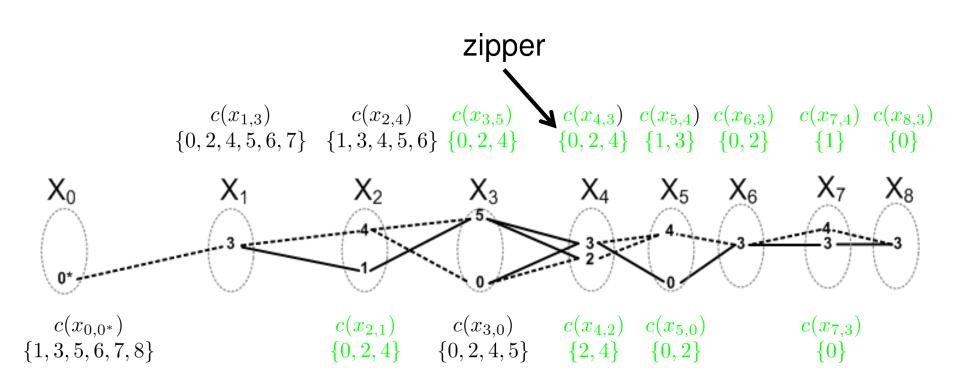
New DC propagator

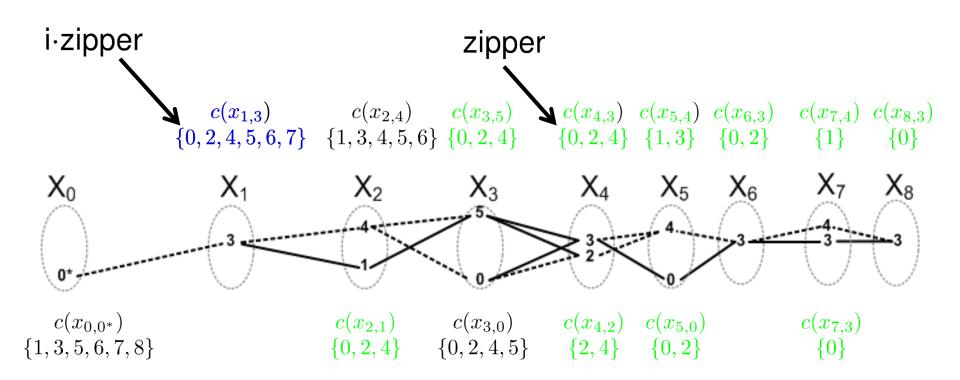


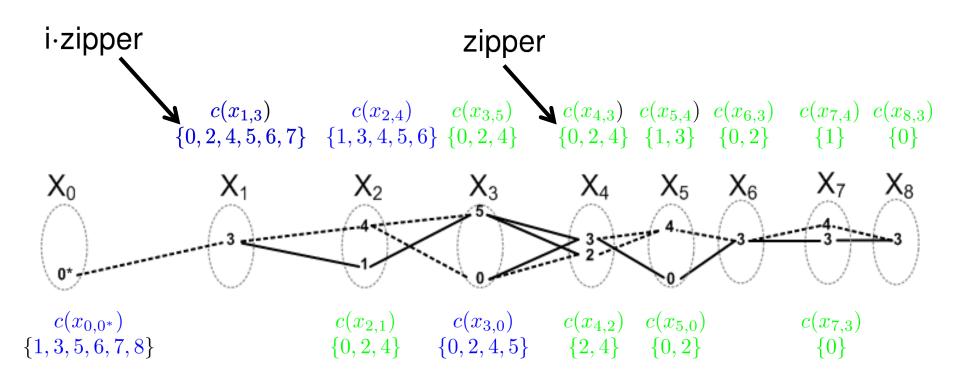
New DC propagator











Structure (Bounded holes)

The number of holes in an i-zipper is bounded.

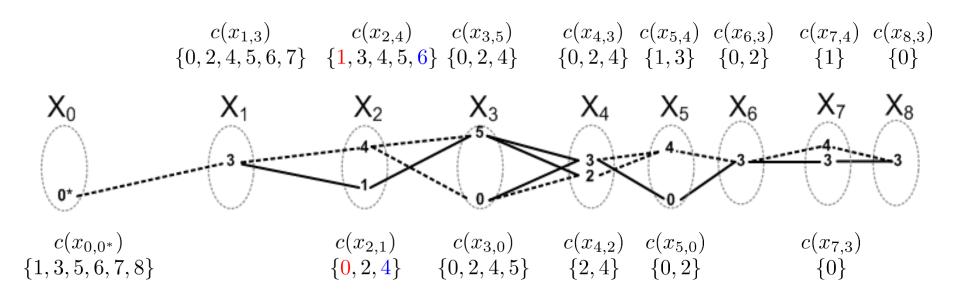
Structure (Bounded holes)

i-zipper:
$$\{2,4\} \cup [4,11] \cup \{11,13,15\}$$

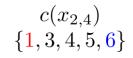
Structure (Closeness)

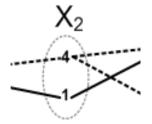
Bounds of $c(x_{i,j})$ and $c(x_{i,k})$ are close to each other.

Structure (Closeness)



Structure (Closeness)





$$c(x_{2,1}) \\ \{ {\color{red}0}, 2, {\color{red}4} \}$$

More properties

and many more properties...

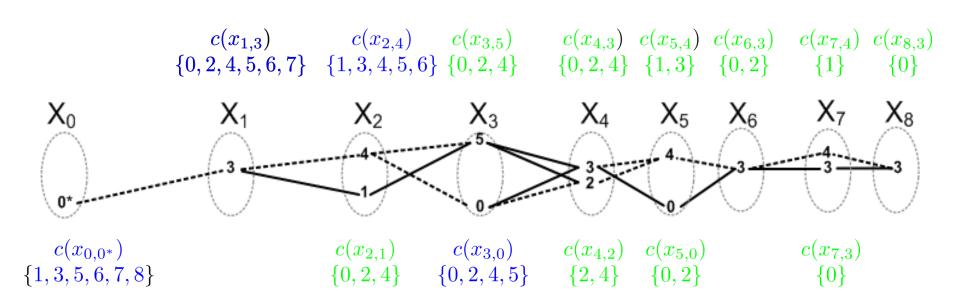
How did we know?

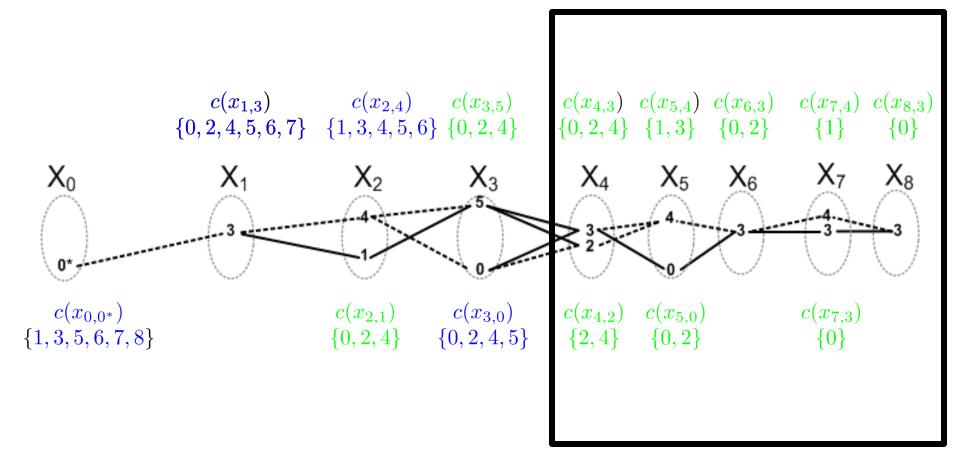
zipper: $\{2, 4, 6, 8\}$.

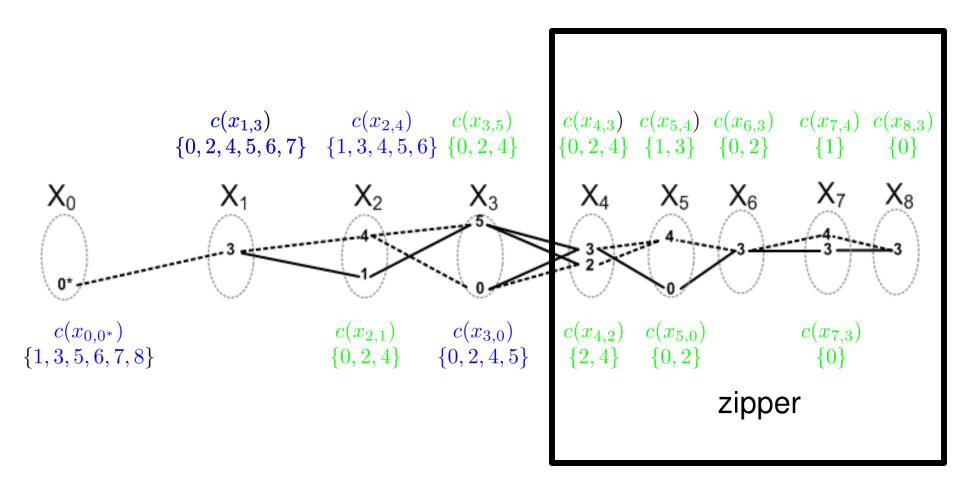
i-zipper: $\{2,4\} \cup [4,11] \cup \{11,13,15\}$

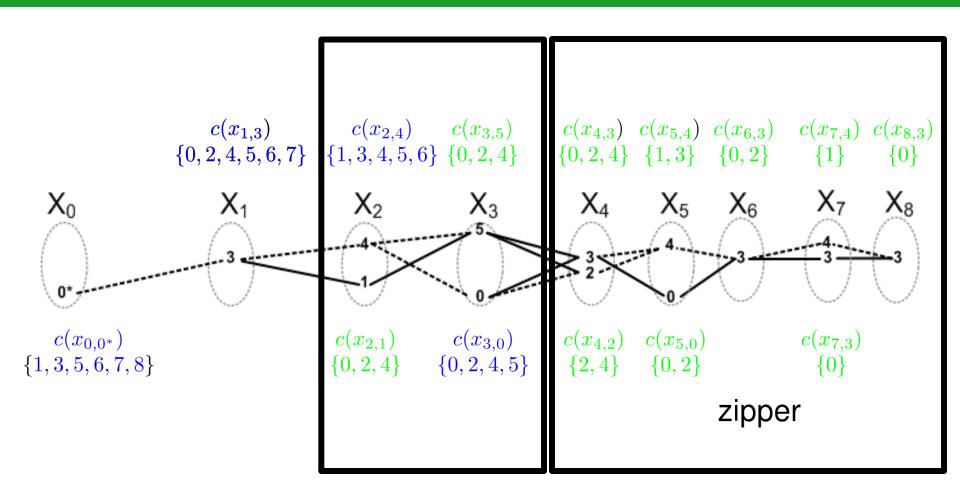
SeqBin

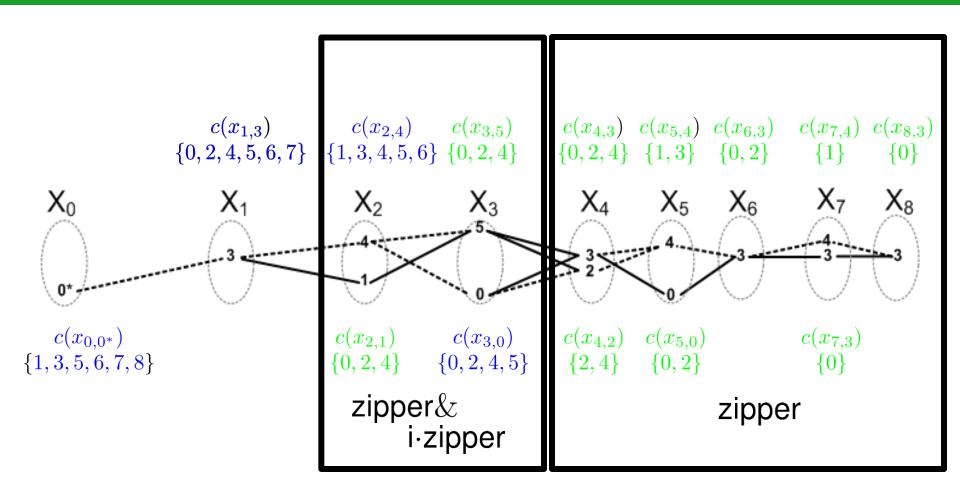
Global structure of cost

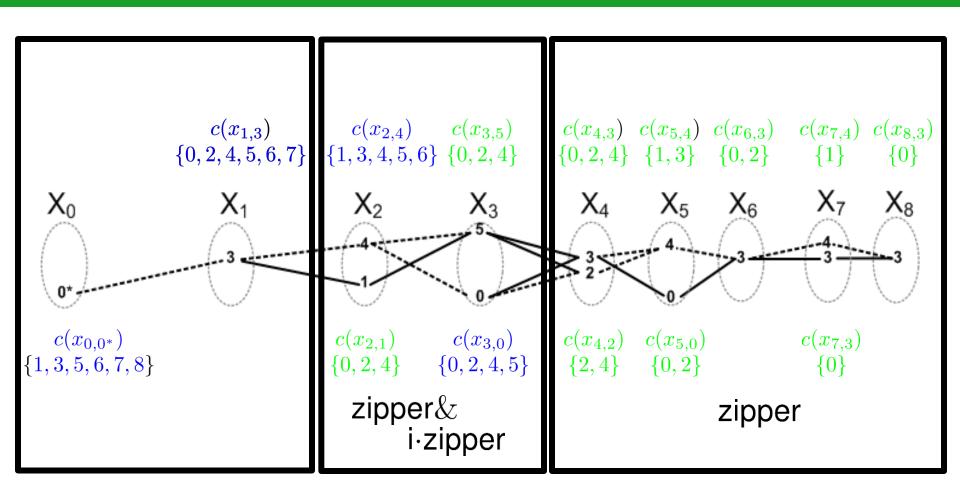


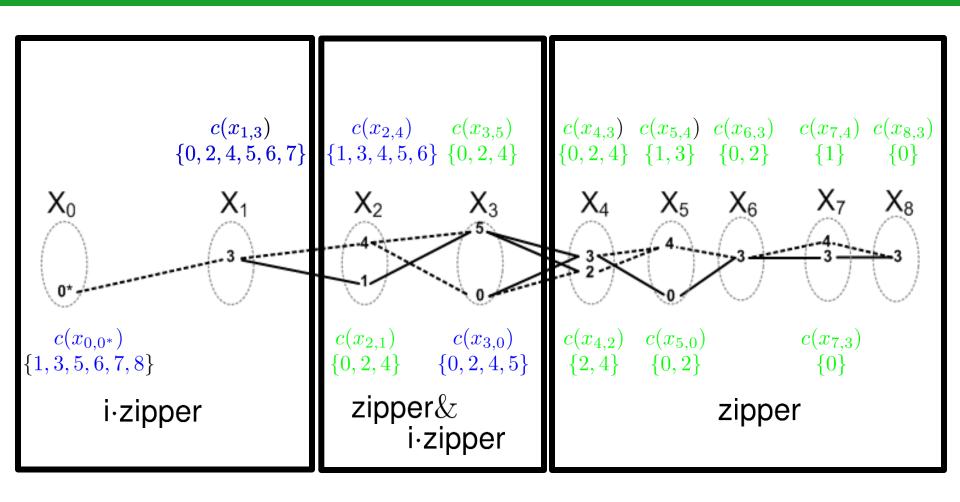


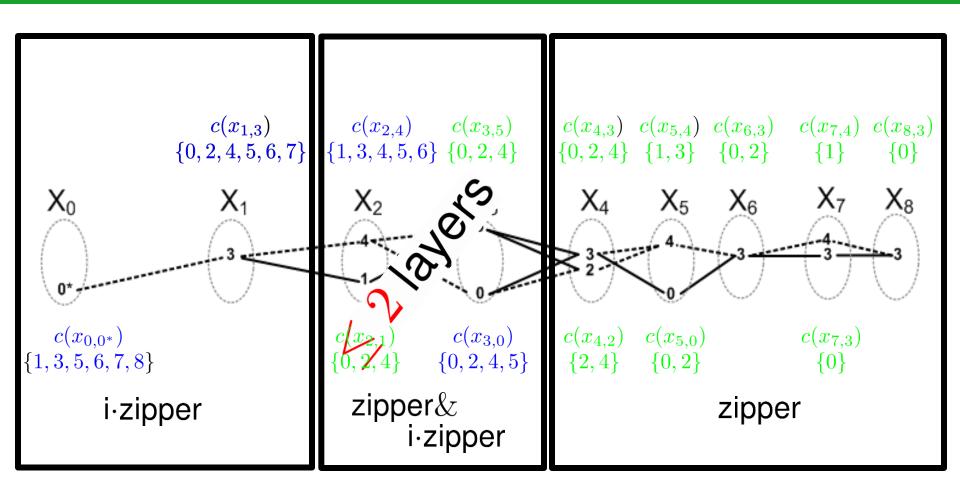












Conclusions

Contributions

If B is monotone then DC propagator runs in $O(nd^2)$

Contributions

If B is monotone then DC propagator runs in $O(nd^2)$

If B is monotone and C is convex

then DC propagator runs in O(nd)

Thank you!