
Constraint-based Register Allocation and

Instruction Scheduling

Roberto Castañeda Lozano – SICS

Mats Carlsson – SICS

Frej Drejhammar – SICS

Christian Schulte – KTH, SICS

CP 2012

Outline

1 Introduction

2 Program Representation

3 Constraint Model

4 Decomposition

5 Evaluation

6 Conclusion

2 / 22

Problems in Traditional Register Allocation

Traditional compiler:

front-end
instruction
selection

instruction
scheduling

register
allocation

source
program

assembly
program

Problems:

Interdependencies: staging is suboptimal

NP-hardness: sub-optimal, complex heuristic algorithms

“Lord knows how GCC does register allocation
right now”. (Anonymous, GCC Wiki)

3 / 22

Can We Do Better?

1 Potentially optimal code: integration, optimization

2 Simplicity, flexibility: separation of modeling and solving

. . . this sounds like something for CP

previous CP approaches:

scheduling only (Malik et al., 2008)

integrated code generation

scheduling, assignment (Kuchcinski, 2003)

selection, scheduling, allocation (Leupers et al., 1997)

→ limitation: local (cannot handle control flow)

4 / 22

Our Approach

Constraint model that unifies

global register allocation with all essential aspects

register assignment, spilling, coalescing, . . .

instruction scheduling

Based on a novel program representation

Robust code generator based on a problem decomposition

Current code quality: on par with LLVM (state of the art)

5 / 22

1 Introduction

2 Program Representation

3 Constraint Model

4 Decomposition

5 Evaluation

6 Conclusion

6 / 22

Liveness and Interference

A temp is live while it might still be used:

t0 ← add . . .

...
...

jr t0

Two temps interfere if they are live simultaneously

non-interfering temps can share registers

7 / 22

Linear Static Single Assignment Form (LSSA)
t0 is global: live in multiple blocks

How to model interference of global temps?

LSSA: decompose global temps into multiple local temps

t1
t1 ← add . . .

t2
... t3

...

t4
jr t4

t1 ≡ t2 t1 ≡ t3

t2 ≡ t4 t3 ≡ t4

Invariant: all temps are local → simple interference model
8 / 22

1 Introduction

2 Program Representation

3 Constraint Model

4 Decomposition

5 Evaluation

6 Conclusion

9 / 22

Register Assignment

to which register do we assign each temporary?

10 / 22

Register Assignment as Rectangle Packing

Register Assignment Rectangle Packing

temp live ranges rectangles

temp size rectangle width

interfering temps cannot share registers rectangles cannot overlap

→ based on (Pereira et al., 2008)
cy
cl
e

0

1

2

3

v0 v1 a0 a1 . . .
..
.

..
. . . .

t0

t1

t2

t3

11 / 22

Spilling and Coalescing
Spilling: saving a temp in memory

Requires copying temps from/to memory

Introduce optional copy instructions:

t1 ← {null, sw, move} t0

which operation implements each copy?

if a copy is inactive (null), its temps are coalesced

cy
cl
e

0

1

2

3

v0 v1 a0 a1 . . . ra m1 m2 . . .

..
.

processor space memory space

. . .

. . .

..
.

..
. . . .

t0

t1

null

12 / 22

Global Register Allocation

Link between blocks: congruences

Congruent temps must be assigned the same register:

v0 v1 a0 a1 . . .

cy
cl
e

0

1

2

3

t0

t1

t2

v0 v1 a0 a1 . . .

cy
cl
e

0

1

2

3

4

t3
t4

t5
t6

v0 v1 a0 a1 . . .

cy
cl
e

0

1

2

t7

t0 ≡ t3
t1 ≡ t4

t1 ≡ t7

t6 ≡ t7

t3 ≡ t5
t4 ≡ t6

13 / 22

Instruction Scheduling

in which cycle is each instruction issued?

Connection to register allocation: live ranges

Classic scheduling model with:

precedences
resource constraints

14 / 22

1 Introduction

2 Program Representation

3 Constraint Model

4 Decomposition

5 Evaluation

6 Conclusion

15 / 22

LSSA Decomposition

Only link between blocks: congruences

instruction cycles?
copy operations?
register of t0?
register of t1?
register of t2? instruction cycles?

copy operations?
register of t3?
register of t4?
register of t5?
register of t6?

instruction cycles?
copy operations?
register of t7?

t0 ≡ t3
t1 ≡ t4

t1 ≡ t7

t6 ≡ t7

t3 ≡ t5
t4 ≡ t6

16 / 22

1 Introduction

2 Program Representation

3 Constraint Model

4 Decomposition

5 Evaluation

6 Conclusion

17 / 22

Experiment Setup

86 functions from bzip2 (SPECint 2006 suite)

Selected MIPS32 instructions with LLVM 3.0

Implementation with Gecode 3.7.3

Sequential search on standard desktop machine

18 / 22

Quality of Generated Code vs. LLVM

100
101
102
103
104
105
106
107
108
109
1010

1001011021031041051061071081091010

es
ti
m
at
ed

cy
cl
es

(c
o
d
e
ge
n
er
at
or
)

estimated cycles (LLVM)

b

b

b

b

b

b

b

bb

b
b

b

b

b

b

b
b

bb

b

b
b

b

b

b

b

b
b

b

b
b

b

b

b

b

b

b

b

b
b

b

b

b

b

b
b

bb

b

b

b

bb

b

b
b

b

b
bb

b

b

bb

b

b

b bbb

b

bb

b

bb
bbb
bb

b
b

b

bb

19 / 22

Solving Time

101

102

103

104

105

106

107

108

101 102 103 104

av
er
ag
e
so
lv
in
g
ti
m
e
(m

s)

instructions

n2

n

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

b b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

b

b

b

b

b

b

b

bb

bb

b

b

b

b
b

b

b

b

b

b

b

b

b

b

bb

b

b

b

b

bb

20 / 22

1 Introduction

2 Program Representation

3 Constraint Model

4 Decomposition

5 Evaluation

6 Conclusion

21 / 22

Conclusion

1 Model that unifies:

all essential aspects of register allocation
instruction scheduling

→ state-of-the-art code quality

2 Problem decomposition

→ robust generator for thousands of instructions

Key: tailored problem representation (LSSA form)

Lots of future work:

search heuristics, implied constraints . . .
integration with instruction selection
evaluate for other processors and benchmarks

22 / 22

	Introduction
	Program Representation
	Constraint Model
	Decomposition
	Evaluation
	Conclusion

