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Problems in Traditional Register Allocation

m Traditional compiler:

assembly
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m Problems:
m Interdependencies: staging is suboptimal

m NP-hardness: sub-optimal, complex heuristic algorithms

“Lord knows how GCC does register allocation
right now”. (Anonymous, GCC Wiki)



Can We Do Better?

Potentially optimal code: integration, optimization
Simplicity, flexibility: separation of modeling and solving

... this sounds like something for CP

m previous CP approaches:
m scheduling only (Malik et al., 2008)

m integrated code generation

m scheduling, assignment (Kuchcinski, 2003)
m selection, scheduling, allocation  (Leupers et al., 1997)

— limitation: local (cannot handle control flow)



Our Approach

Constraint model that unifies

m global register allocation with all essential aspects

B register assignment, spilling, coalescing, ...

m instruction scheduling

Based on a novel program representation

Robust code generator based on a problem decomposition

m Current code quality: on par with LLVM (state of the art)



Program Representation
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Liveness and Interference

m A temp is live while it might still be used:

< add ...

jr

m Two temps interfere if they are live simultaneously

m non-interfering temps can share registers



Linear Static Single Assignment Form (LSSA)
m ty is global: live in multiple blocks
m How to model interference of global temps?

m LSSA: decompose global temps into multiple local temps
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m Invariant: all temps are local — simple interference model
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Register Assignment

to which register do we assign each temporary?
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Register Assignment as Rectangle Packing

Register Assignment Rectangle Packing
temp live ranges rectangles
temp size rectangle width

interfering temps cannot share registers  rectangles cannot overlap

— based on  (Pereira et al., 2008)
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Spilling and Coalescing
m Spilling: saving a temp in memory
m Requires copying temps from/to memory
m Introduce optional copy instructions:
t; < {null, sw,move} ty
which operation implements each copy?
m if a copy is inactive (null), its temps are coalesced
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Global Register Allocation

m Link between blocks: congruences

m Congruent temps must be assigned the same register:
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Instruction Scheduling

in which cycle is each instruction issued?

m Connection to register allocation: live ranges

m Classic scheduling model with:

m precedences
m resource constraints
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Decomposition
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LSSA Decomposition

m Only link between blocks: congruences

instruction cycles?
copy operations?

O )

instruction cycles?

\ copy operations?

instruction cycles?

copy operations? / \

register of t,?
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Evaluation
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Experiment Setup

m 86 functions from bzip2 (SPECint 2006 suite)
m Selected MIPS32 instructions with LLVM 3.0
m Implementation with Gecode 3.7.3

m Sequential search on standard desktop machine
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Quality of Generated Code vs. LLVM
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Solving Time
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Conclusion

Model that unifies:

m all essential aspects of register allocation
m instruction scheduling

— state-of-the-art code quality
Problem decomposition

— robust generator for thousands of instructions

m Key: tailored problem representation (LSSA form)

m Lots of future work:

m search heuristics, implied constraints . ..
m integration with instruction selection
m evaluate for other processors and benchmarks
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