Constraint-based Register Allocation and
Instruction Scheduling

Roberto Castaneda Lozano — SICS
Mats Carlsson — SICS
Frej Drejhammar — SICS
Christian Schulte — KTH, SICS

CP 2012

Outline

Introduction

Program Representation
Constraint Model
Decomposition
Evaluation

[@ Conclusion

/22

Problems in Traditional Register Allocation

m Traditional compiler:

assembly
source program
program r— — 1
i ucti i ucti i
—{front-end nstruction _{’ nstruction [register _:_)
selection | scheduling [<7] allocation |
I ————— _————<= 4

m Problems:
m Interdependencies: staging is suboptimal

m NP-hardness: sub-optimal, complex heuristic algorithms

“Lord knows how GCC does register allocation
right now”. (Anonymous, GCC Wiki)

Can We Do Better?

Potentially optimal code: integration, optimization
Simplicity, flexibility: separation of modeling and solving

... this sounds like something for CP

m previous CP approaches:
m scheduling only (Malik et al., 2008)

m integrated code generation

m scheduling, assignment (Kuchcinski, 2003)
m selection, scheduling, allocation (Leupers et al., 1997)

— limitation: local (cannot handle control flow)

Our Approach

Constraint model that unifies

m global register allocation with all essential aspects

B register assignment, spilling, coalescing, ...

m instruction scheduling

Based on a novel program representation

Robust code generator based on a problem decomposition

m Current code quality: on par with LLVM (state of the art)

Program Representation

/22

Liveness and Interference

m A temp is live while it might still be used:

< add ...

jr

m Two temps interfere if they are live simultaneously

m non-interfering temps can share registers

Linear Static Single Assignment Form (LSSA)
m ty is global: live in multiple blocks
m How to model interference of global temps?

m LSSA: decompose global temps into multiple local temps

t; <—add ...
t1|:|

h=t / tlEtg\

{7

th =t, \t35t4/

t, |:|
jr ty

m Invariant: all temps are local — simple interference model

Constraint Model

/22

Register Assignment

to which register do we assign each temporary?

10/22

Register Assignment as Rectangle Packing

Register Assignment Rectangle Packing
temp live ranges rectangles
temp size rectangle width

interfering temps cannot share registers rectangles cannot overlap

— based on (Pereira et al., 2008)

vO vl a0 al ---

to

cycle
N

[5)

11/22

Spilling and Coalescing
m Spilling: saving a temp in memory
m Requires copying temps from/to memory
m Introduce optional copy instructions:
t; < {null, sw,move} ty
which operation implements each copy?
m if a copy is inactive (null), its temps are coalesced

processor space memory space
A

r A N
vOvlalal ---ramlm2---

0 t
o |1 .0_
9 -
S| 2 i

t | —

3

12 /22

Global Register Allocation

m Link between blocks: congruences

m Congruent temps must be assigned the same register:

vO vl a0 al ---
0
1
© —_— vO vl a0 al ---
3|t =13 0[¢,
h=1t 1 t3 — R
tlEt7 %2 3:5
> t4:t6
u3t6—t*
vO vl a0 al --- .
4

0
K%

13 /22

Instruction Scheduling

in which cycle is each instruction issued?

m Connection to register allocation: live ranges

m Classic scheduling model with:

m precedences
m resource constraints

14 /22

Decomposition

15/22

LSSA Decomposition

m Only link between blocks: congruences

instruction cycles?
copy operations?

O)

instruction cycles?

\ copy operations?

instruction cycles?

copy operations? / \

register of t,?

16 /22

Evaluation

17/22

Experiment Setup

m 86 functions from bzip2 (SPECint 2006 suite)
m Selected MIPS32 instructions with LLVM 3.0
m Implementation with Gecode 3.7.3

m Sequential search on standard desktop machine

18 /22

Quality of Generated Code vs. LLVM

100

estimated cycles (code generator

10°
108
107
10°
10°
10*
103
10?

10!
0

10°10'10%210%10*10°106107 108 10°10%°

estimated cycles (LLVM)

19/22

Solving Time

o
Y TN AT TN NN Y N AN]SR

instructions

—
o
>

[@ Conclusion

21/22

Conclusion

Model that unifies:

m all essential aspects of register allocation
m instruction scheduling

— state-of-the-art code quality
Problem decomposition

— robust generator for thousands of instructions

m Key: tailored problem representation (LSSA form)

m Lots of future work:

m search heuristics, implied constraints . ..
m integration with instruction selection
m evaluate for other processors and benchmarks

	Introduction
	Program Representation
	Constraint Model
	Decomposition
	Evaluation
	Conclusion

