Refining Abstract Interpretation Based Value Analysis with Constraint Programming Techniques

Olivier Ponsini, Claude Michel, Michel Rueher

University of Nice-Sophia Antipolis / I3S – CNRS France

Acknowledgements to Sylvie Putot, Éric Goubault and Franck Védrine (CEA-LIST)

October 2012

с	AI Approach	AI + CP approach	Experiments	Conclusion
	00	000	00	0

Introduction

- **Problem:** verification of programs with floating-point computations
 - → Embedded systems written in C (transportation, nuclear plants)
- Classical approach: Abstract Interpretation
 - + scalability

Problemat

- precision
- Proposition: Combining constraint programming (CP) and Abstract Interpretation (AI)

Problematic

AI Approach

AI + CP approach 000

Experiments

Conclusion O

Floating-point arithmetic pitfalls

Rounding ~>> Counter-intuitive properties

 $(0.1)_{10} = (0.00011001100 \cdots)_2$ simple precision $\rightsquigarrow 0.10000001490116119384765625$

- Neither associative nor distributive operators $(-10000001 + 10^{7}) + 0.5 \neq -10000001 + (10^{7} + 0.5)$
- Absorption, cancellation phenomena Absorption: $10^7+0.5=10^7$ Cancellation: $((1-10^{-7})-1)*10^7=-1.192...(\neq-1)$

 \rightarrow Floats are source of errors in programs

Problematic	AI Approach	AI + CP approach	Experiments	Conclusion
0000	00	000	00	0

Real numbers versus floating-point numbers semantics

Programs run over the floats BUT

- Specification ~> written with the semantics of reals "in mind"
- Program ~~ written with the semantics of reals "in mind"

Difference between semantics ~> problems

Classical Approach: static analysis from source code

Abstraction of program states

- Showing absence of runtime errors
- Estimating rounding errors and their propagation
- Checking properties of programs

• Problems

- Approximations may be very coarse
- Over-approximation ~> possible false alarms

Problematic	Al Approach	AI + CP approach	Experiments
0000	00	000	00

iments

Conclusion 0

AI & False alarm

From Cousot: http://www.di.ens.fr/~cousot/AI/IntroAbsInt.html

Imprecise trajectory abstraction

Problematic 00000 Al Approach

AI + CP approach 000

Experiments

Conclusion O

Abstract domains

Intervals, zonotopes, polyhedra...

Zonotopes: convex polytopes with a central symmetry Sets of affine forms

$$\left. \begin{array}{l} \hat{a} = a_0 + a_1 \varepsilon_1 + \dots + a_n \varepsilon_n \\ \hat{b} = b_0 + b_1 \varepsilon_1 + \dots + b_n \varepsilon_n \\ \vdots \end{array} \right\} \quad \text{with } \varepsilon_i \in [-1, 1]$$

+ Good trade-off between performance and precision

- Not very accurate for nonlinear expressions
- Not accurate on very common program constructs such as conditionals

Example 1: Abstract Interpretation (zonotopes)

Example 1: Abstract Interpretation (zonotopes)

Example 1: Abstract Interpretation (zonotopes)

Our Constraint Programming approach

Use of local consistencies to "shave" the domains computed by AI

- 1. Build a constraint system C_i for each branch between two join nodes (N_1, N_2) in the CFG of the program
- 2. With each C_i , use local consistencies to shrink the domains computed by AI at node N_2
- 3. Compute the union D_{N_2} of the reduced domains from each C_i
- 4. Continue analysis from node N_2 with domains D_{N_2}

ProblematicAI ApproachAI + CP approachExperimentsConclusion00000000000000

Example 1: our Constraint Programming approach

ProblematicAI ApproachAI + CP approachExperimentsConclusion00000000000000

Example 1: our Constraint Programming approach

ProblematicAI ApproachAI + CP approachExperimentsConclusion00000000000000

Example 1: our Constraint Programming approach

Ρ	ro	b	le	m	а	t	i	С	
0	0	0	0	0					

AI Approach

AI + CP approach $\circ \circ \bullet$

Experiments

Conclusion O

Filtering techniques

- FPCS: 3B(w)-consistency over the floats
 - Projection functions for floats
 - Handling of rounding modes
 - Handling of x86 architecture specifics

- RealPaver: Hull & Box-consistency over the reals
 - Reliable approximations of continuous solution sets
 - Correctly rounded interval methods and constraint satisfaction techniques

 Imatic
 AI Approach
 AI + CP approach
 Experiments
 Conclusion

 0
 00
 00
 00
 0
 0

Experiments: refining AI approximations

Fluctuat : state-of-the-art Al analyzer for estimating rounding errors and their propagation using zonotopes

	Fluctuat (AI)		rAiCp (Al +	CP)
	Domain	Time	Domain	Time
quadratic ₁ x ₀	$[-\infty,\infty]$	0.13 s	$[-\infty, 0]$	0.39 s
quadratic ₁ x_1	$[-\infty,\infty]$	0.13 s	$[-8.125,\infty]$	0.39 s
quadratic ₂ x_0	[-2 <i>e</i> 6,0]	0.13 s	[<i>—1e</i> 6, 0]	0.39 s
quadratic ₂ x_1	[-1 <i>e</i> 6,0]	0.13 s	[-3906,0]	0.39 s
sinus7	[-1.009, 1.009]	0.12 s	[-0.853, 0.852]	0.22 s
rump	[-1.2e37, 2e37]	0.13 s	[-1.2e37, 2e37]	0.22 s
$sqrt_1$	[2.116, 2.354]	0.13 s	[2.121, 2.347]	0.81 s
sqrt ₂	$[-\infty,\infty]$	0.2 s	[2.232, 3.168]	1.59 s
bigLoop	$[-\infty,\infty]$	0.15 s	[0, 10]	0.7 s
Total		1.25 s		5.1 s

oblematic	Al Approach	AI + CP approach	Experiments	Conclusion
000	00	000	0	0

Experiments: eliminating false alarms

CDFL: state-of-the-art program analyzer for proving the absence of runtime errors in program with floating-point computations

	rAiCp	Fluctuat	CDFL
False alarms	0	11	0
Total time	40.55 s	18.37 s	208.99 s

Computed on the 55 benchs from CDFL paper (TACAS'12)

Problematic	Al Approach	AI + CP approach	Experiments	Conclusion
00000	00	000	00	•

Conclusion

Abstract Interpretation

- + Good scaling capabilities
- + Handling of linear expressions
- Loss of accuracy

CP framework

- + Good refutation capabilities
- + Handling of **nonlinear** expressions
- Scalability

AI + CP framework:

+ Efficient computation of good domain approximations