Reasoning over Biological Networks using Maximum Satisfiability

João Guerra and Inês Lynce

INESC-ID/Instituto Superior Técnico, Technical University of Lisbon, Portugal

CP 2012, Québec

Current State of Systems Biology

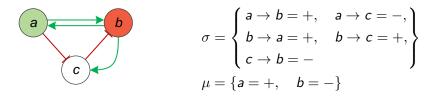
- High-throughput methods
 - Large sets of comprehensive data
- Models are incomplete
- Data is inconsistent
- Aberrant measurements
- We propose a SAT-based framework to
 - Detect inconsistencies
 - Repair inconsistencies
 - Predict unobserved variations

Outline

Modelling

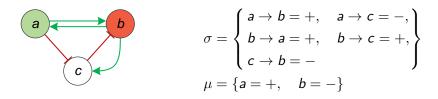
- Influence Graphs
- Sign Consistency Model
- Maximum Satisfiability

2 Reasoning


- Checking Consistency
- Repairing
- Predicting

3 Experimental Evaluation

- Setup
- Results


Influence Graphs

- · Biological networks are represented by influence graphs
- An influence graph is a directed graph $G = (V, E, \sigma)$
 - -V is a set of vertices representing the genes
 - -E is a set of edges representing the interactions between the genes
 - $-\sigma: E \rightarrow \{+, -\}$ is a (partial) labelling of the edges
- An experimental profile $\mu: V \to \{+, -\}$ is a (partial) labelling of the vertices
 - Each vertex is also classified as input or non-input

Sign Consistency Model

- The labelling $\mu(v)$ of a non-input vertex v is consistent if
 - There is at least one influence that explains its sign
 - One edge $u \to v$ such that $\mu(u) \cdot \sigma(u \to v) = \mu(v)$
- An influence graph G = (V, E, σ) and an experimental profile μ are mutually consistent if
 - There are total labellings σ' and μ' (total extensions of σ and μ)
 - Such that $\mu'(v)$ is consistent for every non-input vertex v

• The graph and profile are inconsistent

-
$$\mu(a) = +$$
 while $\mu(b) \cdot \sigma(b
ightarrow a) = -$

• Why?

- Incomplete model
- Aberrant measurements
- Repairing (restoring consistency)
 - $\mu(a) = -$ or $\mu(b) = +$ (cardinality-minimal repairs)
 - Make a and b inputs (subset-minimal repair)

Maximum Satisfiability

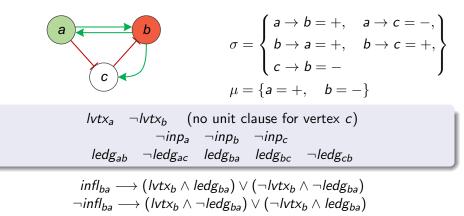
- Boolean Satisfiability (SAT)
 - Given a propositional formula $\varphi,$ find an assignment to the variables that satisfies all clauses in φ
- Maximum Satisfiability (MaxSAT)
 - Optimization version of SAT
 - Find an assignment that maximizes (minimizes) the number of satisfied (unsatisfied) clauses
- Partial MaxSAT
 - Given a propositional formula $\varphi = \varphi_h \bigcup \varphi_s$, find an assignment to the variables that satisfies all hard clauses (φ_h) and the maximum number of soft clauses (φ_s)

Outline

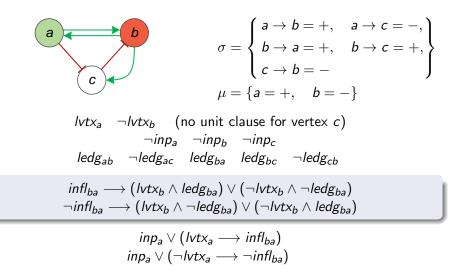
Modelling

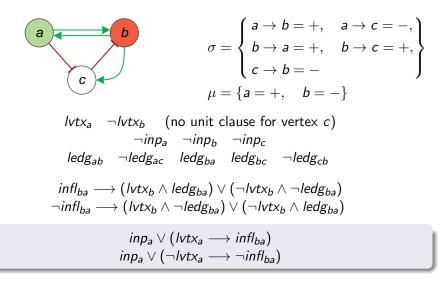
- Influence Graphs
- Sign Consistency Model
- Maximum Satisfiability

2 Reasoning


- Checking Consistency
- Repairing
- Predicting

3 Experimental Evaluation


- Setup
- Results


Checking Consistency

- SAT solution for checking consistency
- 4 types of variables
 - vertices $(lvtx_v) 1$ unit clause for each vertex with known label (μ)
 - inputs $(inp_v) 1$ unit clause for each vertex
 - edges $(ledg_{uv})$ 1 unit clause for each edge with known label (σ)
 - influences $(infl_{uv})$ 2 constraints for each influence
- Ensuring consistency
 - 2 constraints for each vertex
- SAT call reveals whether the graph and profile are mutually consistent or not

$$inp_{a} \lor (lvtx_{a} \longrightarrow infl_{ba})$$
$$inp_{a} \lor (\neg lvtx_{a} \longrightarrow \neg infl_{ba})$$

Repairing

- Partial MaxSAT solution for repairing
- Only cardinality-minimal repairs
- 3 types of repair operations
 - flip vertices signs
 - make vertices inputs
 - flip edges signs
- Converting encoding into MaxSAT
 - Clauses corresponding to what we are repairing are made soft (only unit clauses)
 - The remaining clauses are hard
- MaxSAT call identifies the set of repairs (unsatisfied clauses)

Prediction

- What is common to all (optimal) solutions
- Backbone of the formula
- Intersection of all repairs (predicting under inconsistency)
 - Enumeration (feedback loop)
 - Only 1 blocking clause (the current prediction)
 - Only a subset of the variables is relevant

Predicting under Inconsistency

```
Input: Partial MaxSAT Formula \mathcal{F}
Output: Predicted Repairs of F, prediction
(out, opt, sol) \leftarrow MaxSAT(\mathcal{F})
                                                                // compute initial solution
optimum \leftarrow opt
prediction \leftarrow Get-Repairs(sol)
while |prediction| \neq 0 do
    (out, opt, sol) \leftarrow MaxSAT(\mathcal{F} \cup [\neg prediction])
                                                               // block current prediction
    if out == UNSAT or opt > optimum then
     break
    prediction \leftarrow prediction \cap Get-Repairs(sol)
                                                                       // update prediction
```

return prediction

- Either the prediction is reduced or the algorithm terminates
- At most *n* iterations (*n* = number of repair operations = *optimum*)

Outline

Modelling

- Influence Graphs
- Sign Consistency Model
- Maximum Satisfiability

2 Reasoning

- Checking Consistency
- Repairing
- Predicting

3 Experimental Evaluation

- Setup
- Results

Setup

- SAT/MaxSAT vs ASP (Gebser et al. 2010, 2011)
- Instances
 - Randomly generated
 - GRN of E. coli along with 2 experimental profiles
- Timeout: 600 seconds
- Intel Xeon 5160 (3.00 GHz, 4 GB)
- ASP: clasp, gringo
- SAT: MINISAT, minibones
- MaxSAT: MSUNCORE

Results

Consistency Checking, Predicting under Consistency

- SAT vs ASP
- Trivial for both approaches

Repairing, Predicting under Inconsistency

- MaxSAT vs ASP
- ASP could not solve the hardest instances

		Solved (%)	Time
Repair	ASP	2448 (87)	20471
	MaxSAT	2814 (100)	994
Predict	ASP	2440 (87)	14181
	MaxSAT	2814 (100)	8422

- New SAT/MaxSAT framework for reasoning over biological networks
- SAT/MaxSAT approach more competitive than ASP approach
- Future
 - Minimal inconsistent cores (MICs)
 - More types of repair operations (e.g. add edges)
 - Subset-minimal repairs
 - Improve prediction under inconsistency

Questions?