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Minimal Unsatisfiable

I Finding Minimal Unsatisfiable Subsets (MUSes) in
unsatisfiable CNF formulas

I An unsatisfiable formula F is minimal unsatisfiable iff any
proper subset of its clauses F ′ ⊂ F is satisfiable.

I An assoc for a clause c ∈ F is a complete assignment that
satisfies all clauses in F except c.

I A formula F is minimal unsatisfiable iff every clause in the
formula has at least one assoc.
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Classical destructive algorithm

1. M = ∅

2. while F 6= M

3. pick a clause c ∈ F \M

4. if F \ {c} is satisfiable then

5. M = M ∪ {c}

6. else

7. F = F \ {c}

8. return F
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Classical destructive algorithm

1. M = ∅

2. while F 6= M

3. pick a clause c ∈ F \M

4. if F \ {c} is satisfiable then

5. M = M ∪ {c}

⇒ modelRotate(c,a) //(a=sat. assign. for F \ {c})

6. else

7. F = F ′ s.t. F ′ is unsatisfiable and F ′ ⊆ F \ {c}

8. return F
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Model rotation

Marques-Silva and Lynce, SAT2011
Belov and Marques-Silva, FMCAD2011

function modelRotate(clause c, assignment a)
1. for all l ∈ c do

2. a′ = a except l is assigned true instead of false

3. if

(
exactly one clause c′ ∈ F is
not satisfied by a′ and c′ /∈ M

)
then

4. M = M ∪ {c′}

5. modelRotate(c′,a′)
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Flip graph

I A vertex for every clause

I Edges are labelled: L(ci , cj) = {l | l ∈ ci and ¬l ∈ cj}

I An edge between ci and cj iff L(ci , cj) 6= ∅

c1

x

c2

¬x ∨ y

c3

¬x ∨ z

c4

¬y ∨ ¬z
c5

y ∨ z

{¬x}

{x}

{¬x} {x}

{y, z}

{¬y,¬z}

{¬z}

{z}

{y} {¬y}
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Flip graph
I Lemma 1:

Rotating literal l in an assoc for a clause ci can not
result in an assoc for clause cj if L(ci , cj) 6= {¬l}

I Possible rotation edges:

All edges (ci , cj) for which |L(ci , cj)| = 1

c1

x

c2

¬x ∨ y

c3

¬x ∨ z

c4

¬y ∨ ¬z
c5

y ∨ z

{¬x}

{x}

{¬x} {x}

{y, z}

{¬y,¬z}

{¬z}

{z}

{y} {¬y}
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Rotation example

c1

x

c2

¬x ∨ y

c3

¬x ∨ z

c4

¬y ∨ ¬z

{¬x}

{x}

{¬x} {x}

{¬z}

{z}

{y} {¬y}

assoc for: c3 x = true y = true z = false

assoc for: c4 x = true y = true z = true
assoc for: c2 x = true y = false z = true
assoc for: c1 x = false y = false z = true
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¬x ∨ y

c3

¬x ∨ z
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¬y ∨ ¬z

{¬x}

{x}

{¬x} {x}

{¬z}

{z}

{y} {¬y}

assoc for: c3 x = true y = true z = false
assoc for: c4 x = true y = true z = true
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Rotation example

c1

x

c2

¬x ∨ y

c3

¬x ∨ z

c4

¬y ∨ ¬z

{¬x}

{x}

{¬x} {x}

{¬z}

{z}

{y} {¬y}

There are 3 possible assocs for c1.

x=false y=false z=true

→ assoc for c2

x=false y=true z=false

→ assoc for c3

x=false y=false z=false

→ does not satisfy c2 and c3!
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Rotation example

c1

x

c2

¬x ∨ y

c3

¬x ∨ z

c4

¬y ∨ ¬z

{¬x}

{x}

{¬x} {x}

{¬z}

{z}

{y} {¬y}

There are 3 possible assocs for c1. Rotation gives:

x=true y=false z=true → assoc for c2
x=true y=true z=false → assoc for c3
x=true y=false z=false → does not satisfy c2 and c3!
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Rotation example

c1

x

c2

¬x ∨ y

c3

¬x ∨ z

c4

¬y ∨ ¬z

{¬x}

{x}

{¬x} {x}

{¬z}

{z}

{y} {¬y}

I Guaranteed rotation edges:

All possible rotation edges (ci , cj) s.t. for all ck 6= cj
it holds that L(ci , cj) 6= L(ci , ck )
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Rotation theory

I Theorem 1:
If ci has an assoc and a guaranteed rotation edge
(ci , cj) exist then cj has an assoc

I If ci has an assoc and a path over guaranteed rotation
edges from ci to cj exist then cj has an assoc

I Corollary 1:

If a path over guaranteed rotation edges between
ci and cj exists in both directions then ci has an
assoc iff cj has an assoc
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Strongly Connected Components

I A directed graph is strongly connected if there exists a
path between any two of its vertices

I The strongly connected components (SCCs) of a directed
graph are its maximal strongly connected subgraphs

Figure source: http://en.wikipedia.org/wiki/Strongly_connected_component

http://en.wikipedia.org/wiki/Strongly_connected_component


Understanding, improving and parallelizing model rotation
October 10th, 2012

9/14

Rotation theory continued

I Let F be an unsatisfiable formula

I Let EG be the set of guaranteed rotation edges F induces

I Consider the SCCs of the graph G = (F ,EG)

I Corollary 2:

A MUS F ′ ⊆ F can be found using no more SAT
solver calls than there are SCCs in G = (F ,EG)
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Rotation theory continued

I Let a root SCC be an SCC that contains no vertices with
incoming edges originating outside the SCC

I Let F ′ be an minimal unsatisfiable formula, and E ′
G the set

of guaranteed rotation edges it induces

I Corollary 3:

An assoc can be found for every clause in F ′ using
no more SAT solver calls than there are root SCCs
in G′ = (F ′,E ′

G)
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Statistics - benchmarks from Marques-Silva et.al.

original MUSes
# benchmarks 500 491
# with single root SCC 148 148

avg. # clauses 6874.4 6204.2
avg. # SCCs 3000.4 (44%) 2484.1 (40%)
avg. # root SCCs 2124.7 1680.5 (27%)

avg. clause length 2.32 2.35
avg. out-degree EP 12.30 11.24
avg. out-degree EG 1.60 1.63
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Statistics - benchmarks from SAT11 competition

original MUSes
# benchmarks 298 262
# with single root SCC 0 51

avg. # clauses 404574 8162.7
avg. # SCCs 327815 (81%) 3355.6 (41%)
avg. # root SCCs 258350 1891.1 (23%)

avg. clause length 2.53 2.42
avg. out-degree EP 86.84 14.16
avg. out-degree EG 0.89 1.59
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Improving & Parallelizing

c1

¬x1 ∨ ¬z1

c6

z1 ∨ z2

c9

¬y2 ∨ ¬z2

c7

¬x2 ∨ ¬z2

c3

¬x2 ∨ ¬y2

c5

¬y1 ∨ ¬z1

c2

x1 ∨ x2

c8

¬x1 ∨ ¬y1

c4

y1 ∨ y2

I The suggested improvement for model rotation concerns
cyclic paths.

I The parallelization uses the Tarmo parallel incremental
SAT solver.
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Conclusions

I This work provides new insights on model rotation

I The key is to look at the algorithm as a graph search

I Typical benchmarks have properties that guarantee
effectiveness of model rotation

I The technique was improved, parallelized and evaluated


