

Understanding, improving and parallelizing MUS finding using model rotation

Siert Wieringa

Aalto University School of Science and Technology Finland

October 10th, 2012

Minimal Unsatisfiable

- Finding Minimal Unsatisfiable Subsets (MUSes) in unsatisfiable CNF formulas
- An unsatisfiable formula *F* is minimal unsatisfiable iff any proper subset of its clauses *F*' ⊂ *F* is satisfiable.
- An assoc for a clause c ∈ F is a complete assignment that satisfies all clauses in F except c.
- ► A formula *F* is minimal unsatisfiable iff every clause in the formula has at least one assoc.

Classical destructive algorithm

1.
$$M = \emptyset$$

2. while
$$\mathcal{F}
eq M$$

3. pick a clause
$$c \in \mathcal{F} \setminus M$$

4. if
$$\mathcal{F} \setminus \{c\}$$
 is satisfiable then

5.
$$M = M \cup \{c\}$$

6. else

7.
$$\mathcal{F} = \mathcal{F} \setminus \{c\}$$

8. return \mathcal{F}

Classical destructive algorithm

1.
$$M = \emptyset$$

2. while
$$\mathcal{F}
eq M$$

3. pick a clause
$$c \in \mathcal{F} \setminus M$$

4. if
$$\mathcal{F} \setminus \{c\}$$
 is satisfiable then

5.
$$M = M \cup \{c\}$$

6. else

7. $\mathcal{F} = \mathcal{F}'$ s.t. \mathcal{F}' is unsatisfiable and $\mathcal{F}' \subseteq \mathcal{F} \setminus \{c\}$

8. return \mathcal{F}

Classical destructive algorithm

Model rotation

Marques-Silva and Lynce, SAT2011 Belov and Marques-Silva, FMCAD2011

function modelRotate(clause c, assignment a)

- 1. for all $l \in c$ do
- 2. a' = a except *I* is assigned **true** instead of **false**
- 3. if $\begin{pmatrix} exactly one clause c' \in \mathcal{F} \text{ is } \\ not satisfied by a' and c' \notin M \end{pmatrix}$ then
- $4. \qquad M = M \cup \{c'\}$

5. modelRotate
$$(c', a')$$

Flip graph

- A vertex for every clause
- Edges are labelled: $L(c_i, c_j) = \{I \mid I \in c_i \text{ and } \neg I \in c_j\}$
- An edge between c_i and c_j iff $L(c_i, c_j) \neq \emptyset$

Understanding, improving and parallelizing model rotation October 10th, 2012 5/14

Flip graph

Lemma 1:

Rotating literal *I* in an assoc for a clause c_i can **not** result in an assoc for clause c_i if $L(c_i, c_j) \neq \{\neg I\}$

Possible rotation edges:

All edges (c_i, c_j) for which $|L(c_i, c_j)| = 1$

Understanding, improving and parallelizing model rotation October 10th, 2012 5/14

assoc for: c_3 x = true y = true z = false

assoc for: c_3 x = true y = true z = false assoc for: c_4 x = true y = true z = true assoc for: c_2 x = true y = false z = true assoc for: c_1 x = false y = false z = true

There are 3 possible assocs for c_1 .

x= false	y= false	z=true
x= false	y=true	z= false
x= false	y= false	z=false

There are 3 possible assocs for c_1 . Rotation gives:

x= true	y= false	z=true	\rightarrow	assoc for <i>c</i> ₂
x= true	y=true	z= false	\rightarrow	assoc for c_3
x= true	y= false	z= false	\rightarrow	does not satisfy c_2 and c_3

Guaranteed rotation edges:

All possible rotation edges (c_i, c_j) s.t. for all $c_k \neq c_j$ it holds that $L(c_i, c_j) \neq L(c_i, c_k)$

Rotation theory

Theorem 1:

If c_i has an assoc and a guaranteed rotation edge (c_i, c_j) exist then c_j has an assoc

- If c_i has an assoc and a path over guaranteed rotation edges from c_i to c_j exist then c_j has an assoc
- Corollary 1:

If a path over guaranteed rotation edges between c_i and c_j exists in both directions then c_i has an assoc iff c_j has an assoc

Strongly Connected Components

- A directed graph is strongly connected if there exists a path between any two of its vertices
- The strongly connected components (SCCs) of a directed graph are its maximal strongly connected subgraphs

Figure source: http://en.wikipedia.org/wiki/Strongly_connected_component

Rotation theory continued

- Let \mathcal{F} be an unsatisfiable formula
- Let E_G be the set of guaranteed rotation edges \mathcal{F} induces
- Consider the SCCs of the graph $G = (\mathcal{F}, E_G)$
- Corollary 2:

A MUS $\mathcal{F}' \subseteq \mathcal{F}$ can be found using no more SAT solver calls than there are SCCs in $G = (\mathcal{F}, E_G)$

Rotation theory continued

- Let a root SCC be an SCC that contains no vertices with incoming edges originating outside the SCC
- ► Let *F*' be an *minimal unsatisfiable* formula, and *E*'_G the set of guaranteed rotation edges it induces
- Corollary 3:

An assoc can be found for every clause in \mathcal{F}' using no more SAT solver calls than there are root SCCs in $G' = (\mathcal{F}', E'_G)$

Statistics - benchmarks from Marques-Silva et.al.

	original		MUSes	
# benchmarks	500		491	
# with single root SCC	148		148	
-				
avg. # clauses	6874.4		6204.2	
avg. # SCCs	3000.4	(44%)	2484.1	(40%)
avg. # root SCCs	2124.7		1680.5	(27%)
-				
avg. clause length	2.32		2.35	
avg. out-degree E _P	12.30		11.24	
avg. out-degree E_G	1.60		1.63	

Statistics - benchmarks from SAT11 competition

	original		MUSes	
# benchmarks	298		262	
# with single root SCC	0		51	
avg. # clauses	404574		8162.7	
avg. # SCCs	327815	(81%)	3355.6	(41%)
avg. # root SCCs	258350		1891.1	(23%)
-				
avg. clause length	2.53		2.42	
avg. out-degree E _P	86.84		14.16	
avg. out-degree E _G	0.89		1.59	

Improving & Parallelizing

- The suggested improvement for model rotation concerns cyclic paths.
- The parallelization uses the Tarmo parallel incremental SAT solver.

Conclusions

- This work provides new insights on model rotation
- The key is to look at the algorithm as a graph search
- Typical benchmarks have properties that guarantee effectiveness of model rotation
- > The technique was improved, parallelized and evaluated

