Syntactically Characterizing Local-to-Global Consistency in ORD-Horn

Michał Wrona

Linköping University SE-581 83 Linköping, Sweden michal.wrona@liu.se

CP 2012, Québec City

Michał Wrona [Local-to-Global Consistency in ORD-Horn](#page-37-0)

 \leftarrow \Box

a

 299

Ε

手下 メラト

イロメ イ団メ イモメ イモメー

 $E = \Omega Q$

Michał Wrona [Local-to-Global Consistency in ORD-Horn](#page-0-0)

メロメ メ御 メメ きょうくきょう

重→ 299

2 [Local-to-Global Consistency](#page-11-0)

→ 老 → → 老 → →

 \leftarrow \Box \rightarrow \rightarrow \Box \rightarrow

 QQ

(Britis)

Constraint Satisfaction Problem(Γ)

Let Γ be a relational τ -structure over some domain D.

$CSP(\Gamma)$ — for finite τ

Instance: A primitive positive formula ϕ of the form $R_1(x_1^1,\ldots,x_{n_1}^1) \wedge \ldots \wedge R_k(x_1^k,\ldots,x_{n_k}^k)$, where $R_1,\ldots,R_k \in \tau$. Question: Is ϕ satisfiable in Γ?

 -17.5

重き メラメー

G.

Constraint Satisfaction Problem(Γ)

Let Γ be a relational τ -structure over some domain D.

$CSP(\Gamma)$ — for finite τ

Instance: A primitive positive formula ϕ of the form $R_1(x_1^1,\ldots,x_{n_1}^1) \wedge \ldots \wedge R_k(x_1^k,\ldots,x_{n_k}^k)$, where $R_1,\ldots,R_k \in \tau$. Question: Is ϕ satisfiable in Γ?

Many problems may be modelled as CSP(Γ):

- **•** boolean satisfiability problems, e.g., k-SAT;
- **•** graph homomorphism problems, e.g., k-colouring;
- network satisfaction problems in spatial-temporal reasoning, for qualitative calculi such as point algebra, Allen's interval algebra, region connection calculi.

化重变 化重变性

Constraint Satisfaction Problem(Γ)

Let Γ be a relational τ -structure over some domain D .

$CSP(\Gamma)$ — for finite τ

Instance: A primitive positive formula ϕ of the form $R_1(x_1^1,\ldots,x_{n_1}^1) \wedge \ldots \wedge R_k(x_1^k,\ldots,x_{n_k}^k)$, where $R_1,\ldots,R_k \in \tau$. Question: Is ϕ satisfiable in Γ?

Many problems may be modelled as CSP(Γ):

- **•** boolean satisfiability problems, e.g., k-SAT;
- **•** graph homomorphism problems, e.g., k-colouring;
- network satisfaction problems in spatial-temporal reasoning, for qualitative calculi such as point algebra, Allen's interval algebra, region connection calculi.

All structures considered here have a first-order definition in ($\mathbb{Q};$ <), they are all ω -categorical.

A countably infinite structure Γ is ω -categorical if all countable models of the first-order theory of Γ are isomorphic. イロメ イ団メ イモメ イモメー 目

 2990

Network Satisfaction Problem for Point Algebra

A point algebra P is a set of all binary relations $\mathcal{R}_2(\mathbb{Q})$ with a first order definition over $(\mathbb{Q}; <)$:

 $<,>,\neq, \leq, \geq, =, \mathbb{Q}^2, \emptyset.$

4 D F

∢ n ≯

④重き ④重き …

 QQ

GB 11

Network Satisfaction Problem for Point Algebra

A point algebra P is a set of all binary relations $\mathcal{R}_2(\mathbb{O})$ with a first order definition over $(\mathbb{Q}; <)$:

 $<,>,\neq, \leq, \geq, =, \mathbb{Q}^2, \emptyset.$

The Network Satisfaction Problem (NSP) for P

Instance: a network $\mathcal{N} = (V; L)$, where $L: V^2 \to \mathcal{R}_2(\mathbb{Q})$. Question: is there $f: V \to \mathbb{Q}$ such that for all (v_1, v_2) we have $(f(v_1), f(v_2)) \in L(v_1, v_2)$?

 -111

4 重 8 4 重 8 …

三 一 QQ

Network Satisfaction Problem for Point Algebra

A point algebra P is a set of all binary relations $\mathcal{R}_2(\mathbb{O})$ with a first order definition over $(\mathbb{Q}; <)$:

 $<,>,\neq, \leq, \geq, =, \mathbb{Q}^2, \emptyset.$

The Network Satisfaction Problem (NSP) for P

Instance: a network $\mathcal{N} = (V; L)$, where $L: V^2 \to \mathcal{R}_2(\mathbb{Q})$. Question: is there $f: V \to \mathbb{Q}$ such that for all (v_1, v_2) we have $(f(v_1), f(v_2)) \in L(v_1, v_2)$?

Every instance of $NSP(\mathcal{P})$ may be rewritten into an instance of $CSP(\mathbb{Q}; <, >, \neq, \leq, \geq, =, \mathbb{Q}^2, \emptyset).$

化重氮 化重氮化重氮

Network Satisfaction Problem for Point Algebra

A point algebra P is a set of all binary relations $\mathcal{R}_2(\mathbb{O})$ with a first order definition over $(\mathbb{Q}; <)$:

 $<,>,\neq, \leq, \geq, =, \mathbb{Q}^2, \emptyset.$

The Network Satisfaction Problem (NSP) for P

Instance: a network $\mathcal{N} = (V; L)$, where $L: V^2 \to \mathcal{R}_2(\mathbb{Q})$. Question: is there $f: V \to \mathbb{Q}$ such that for all (v_1, v_2) we have $(f(v_1), f(v_2)) \in L(v_1, v_2)$?

Every instance of $NSP(\mathcal{P})$ may be rewritten into an instance of $CSP(\mathbb{Q}; <, >, \neq, \leq, \geq, =, \mathbb{Q}^2, \emptyset).$

 $(x < y) \wedge (y \neq v) \wedge (z = v) \wedge (x \leq z) \wedge (z \leq y) \wedge (\mathbb{Q}^2(x, v))$ is satisfiable in $(\mathbb{Q}; <, \leq, >, \geq, =, \neq, \emptyset, \mathbb{Q}^2).$

医毛囊 医牙骨下的

G.

 QQ

is satisfiable iff

Definition

An instance ϕ of CSP(Γ), for some Γ, over a set of variables V is:

- k-consistent if every partial solution to $(k-1)$ variables may be extended to any other variable;
- strongly *k*-consistent if it is *i*-consistent for every $i \leq k$;
- globally consistent if it is strongly $|V|$ -consistent.

 -111

k Exis Exis

Definition

An instance ϕ of CSP(Γ), for some Γ, over a set of variables V is:

- k-consistent if every partial solution to $(k-1)$ variables may be extended to any other variable;
- strongly k-consistent if it is *i*-consistent for every $i \leq k$;
- globally consistent if it is strongly $|V|$ -consistent.

Example: (Koubarakis'95)

• $(x_1 < x_2) \wedge (x_2 < x_3) \wedge (x_4 < x_5) \wedge (x_5 < x_6) \wedge (x_2 \neq x_5)$ — 2-consistent but not 3-consistent.

A partial solution: $x_1 = 3$; $x_3 = 0$ cannot be extended to x_2 .

化重新润滑脂

GH. QQ

Definition

An instance ϕ of CSP(Γ), for some Γ, over a set of variables V is:

- k-consistent if every partial solution to $(k-1)$ variables may be extended to any other variable;
- strongly k-consistent if it is *i*-consistent for every $i \leq k$;
- globally consistent if it is strongly $|V|$ -consistent.

Example: (Koubarakis'95)

• $(x_1 < x_2) \wedge (x_2 < x_3) \wedge (x_4 < x_5) \wedge (x_5 < x_6) \wedge (x_2 \neq x_5)$ — 2-consistent but not 3-consistent. A partial solution: $x_1 = 3$; $x_3 = 0$ cannot be extended to x_2 .

• But can be made (strongly) 3-consistent by adding $(x_1 \le x_3) \wedge (x_4 \le x_6)$. Now, $x_1 = 3$; $x_3 = 0$ is not a partial solution anymore.

 $\mathbf{A} \oplus \mathbf{B}$, $\mathbf{A} \oplus \mathbf{B}$, $\mathbf{A} \oplus \mathbf{B}$

Definition

An instance ϕ of CSP(Γ), for some Γ, over a set of variables V is:

- k-consistent if every partial solution to $(k-1)$ variables may be extended to any other variable;
- strongly k-consistent if it is *i*-consistent for every $i \leq k$;
- globally consistent if it is strongly $|V|$ -consistent.

Example: (Koubarakis'95)

• $(x_1 < x_2) \wedge (x_2 < x_3) \wedge (x_4 < x_5) \wedge (x_5 < x_6) \wedge (x_2 \neq x_5)$ — 2-consistent but not 3-consistent.

A partial solution: $x_1 = 3$; $x_3 = 0$ cannot be extended to x_2 .

- **•** But can be made (strongly) 3-consistent by adding $(x_1 < x_3) \wedge (x_4 < x_6)$. Now, $x_1 = 3$; $x_3 = 0$ is not a partial solution anymore.
- Not 4-consistent. A part solution: $x_2 = x_4 = x_6 = 1$ can't be extended to $X₅$.

K ロンス 御 > ス 할 > ス 할 > 「 할 …

Definition

An instance ϕ of CSP(Γ), for some Γ, over a set of variables V is:

- k-consistent if every partial solution to $(k-1)$ variables may be extended to any other variable;
- strongly k-consistent if it is *i*-consistent for every $i \leq k$;
- globally consistent if it is strongly $|V|$ -consistent.

Example: (Koubarakis'95)

• $(x_1 < x_2) \wedge (x_2 < x_3) \wedge (x_4 < x_5) \wedge (x_5 < x_6) \wedge (x_2 \neq x_5)$ — 2-consistent but not 3-consistent.

A partial solution: $x_1 = 3$; $x_3 = 0$ cannot be extended to x_2 .

- **•** But can be made (strongly) 3-consistent by adding $(x_1 < x_3) \wedge (x_4 < x_6)$. Now, $x_1 = 3$; $x_3 = 0$ is not a partial solution anymore.
- Not 4-consistent. A part solution: $x_2 = x_4 = x_6 = 1$ can't be extended to $X₅$.
- Can be made globally consistent by adding $(x_1 \neq x_5 \vee x_3 \neq x_5) \wedge (x_4 \neq x_2 \vee x_6 \neq x_2) \wedge (x_1 \neq x_3 \vee x_1 \neq x_4 \vee x_1 \neq x_6).$ $(x_1 \neq x_5 \vee x_3 \neq x_5) \wedge (x_4 \neq x_2 \vee x_6 \neq x_2) \wedge (x_1 \neq x_3 \vee x_1 \neq x_4 \vee x_1 \neq x_6).$ $(x_1 \neq x_5 \vee x_3 \neq x_5) \wedge (x_4 \neq x_2 \vee x_6 \neq x_2) \wedge (x_1 \neq x_3 \vee x_1 \neq x_4 \vee x_1 \neq x_6).$ $(x_1 \neq x_5 \vee x_3 \neq x_5) \wedge (x_4 \neq x_2 \vee x_6 \neq x_2) \wedge (x_1 \neq x_3 \vee x_1 \neq x_4 \vee x_1 \neq x_6).$ $(x_1 \neq x_5 \vee x_3 \neq x_5) \wedge (x_4 \neq x_2 \vee x_6 \neq x_2) \wedge (x_1 \neq x_3 \vee x_1 \neq x_4 \vee x_1 \neq x_6).$ $(x_1 \neq x_5 \vee x_3 \neq x_5) \wedge (x_4 \neq x_2 \vee x_6 \neq x_2) \wedge (x_1 \neq x_3 \vee x_1 \neq x_4 \vee x_1 \neq x_6).$ $(x_1 \neq x_5 \vee x_3 \neq x_5) \wedge (x_4 \neq x_2 \vee x_6 \neq x_2) \wedge (x_1 \neq x_3 \vee x_1 \neq x_4 \vee x_1 \neq x_6).$ $(x_1 \neq x_5 \vee x_3 \neq x_5) \wedge (x_4 \neq x_2 \vee x_6 \neq x_2) \wedge (x_1 \neq x_3 \vee x_1 \neq x_4 \vee x_1 \neq x_6).$ $(x_1 \neq x_5 \vee x_3 \neq x_5) \wedge (x_4 \neq x_2 \vee x_6 \neq x_2) \wedge (x_1 \neq x_3 \vee x_1 \neq x_4 \vee x_1 \neq x_6).$ $(x_1 \neq x_5 \vee x_3 \neq x_5) \wedge (x_4 \neq x_2 \vee x_6 \neq x_2) \wedge (x_1 \neq x_3 \vee x_1 \neq x_4 \vee x_1 \neq x_6).$

 000

Establishing Strong Consistency

Theorem. (Bodirsky+Dalmau'06)

For every $ω$ -categorical structure $Γ$ and k there is an expansion $Δ$ of $Γ$ containing an empty relation R_{e} , and a polynomial-time algorithm which converts every instance ϕ of CSP(Γ) into an equivalent strongly k-consistent instance ψ of CSP(Δ). The algorithm tries to infer R_e .

 -17.5

化重新化重新

重

 Ω

Establishing Strong Consistency

Theorem. (Bodirsky+Dalmau'06)

For every $ω$ -categorical structure $Γ$ and k there is an expansion $Δ$ of $Γ$ containing an empty relation R_{e} , and a polynomial-time algorithm which converts every instance ϕ of CSP(Γ) into an equivalent strongly k-consistent instance ψ of CSP(Δ). The algorithm tries to infer R_e .

- **1** If ψ contains an occurrence of R_e , then ϕ does not have a solution.
- ² For some Γ there exists k such that establishing strong k-consistency solves CSP(Γ), that is, the converse of [1](#page-16-1) is also true.
- **3** For some Γ there exists k such that ψ is also globally consistent.

 $\mathcal{A}(\overline{\mathbb{Q}}) \times \mathcal{A}(\mathbb{B}) \times \mathcal{A}(\mathbb{B}) \times \mathbb{R}$

Establishing Strong Consistency

Theorem. (Bodirsky+Dalmau'06)

For every $ω$ -categorical structure $Γ$ and k there is an expansion $Δ$ of $Γ$ containing an empty relation R_{e} , and a polynomial-time algorithm which converts every instance ϕ of CSP(Γ) into an equivalent strongly k-consistent instance ψ of CSP(Δ). The algorithm tries to infer R_e .

- **1** If ψ contains an occurrence of R_e , then ϕ does not have a solution.
- ² For some Γ there exists k such that establishing strong k-consistency solves CSP(Γ), that is, the converse of [1](#page-16-1) is also true.
- **3** For some Γ there exists k such that ψ is also globally consistent.

Examples:

- $\bullet \Gamma = (\mathbb{O}; \{(x, y, z) \mid x > y \lor x > z\})$ satisfies [\(1\)](#page-16-1) but not [\(2\)](#page-16-2). (Bodirsky+Kára'08)
- $\bullet \Gamma = (\mathbb{Q}; \neq, \{(x, y, z) \mid x \neq y \lor x = z\},\)$ satisfies [\(2\)](#page-16-2) but not [\(3\)](#page-16-3). (e.g., this paper)
- $\bullet \Gamma = (\mathbb{Q}; \leq, \leq, \neq, \{(x_1, x_2, x_3, x_4) \mid x_1 \neq x_2 \vee x_3 \neq x_4\})$ satisfies [\(3\)](#page-16-3) (Koubarakis'95) KOD KARD KED KED E VOQO

Definition

We say that a structure Γ has local-to-global consistency w.r.t to k if every strongly k-consistent variant ψ of ϕ is also globally consistent.

 $\left\{ \begin{array}{ccc} \pm & \pm & \pm & \pm & \pm \end{array} \right.$

高

II

 -111

 QQ

Ε

Definition

We say that a structure Γ has local-to-global consistency w.r.t to k if every strongly k-consistent variant ψ of ϕ is also globally consistent.

Why local-to-global consistency is a desirable property?

 \leftarrow \Box

 QQ

Ε

ヨメ メヨメ

Definition

We say that a structure Γ has local-to-global consistency w.r.t to k if every strongly k-consistent variant ψ of ϕ is also globally consistent.

Why local-to-global consistency is a desirable property?

- A set of constraints is globally consistent means:
	- it is completely explicit,
	- a solution may be found by greedily assigning values to the variables one at a time (without backtracking).

手下 メラト

Definition

We say that a structure Γ has local-to-global consistency w.r.t to k if every strongly k-consistent variant ψ of ϕ is also globally consistent.

Why local-to-global consistency is a desirable property?

- A set of constraints is globally consistent means:
	- it is completely explicit,
	- a solution may be found by greedily assigning values to the variables one at a time (without backtracking).
- If Γ has local-to-global consistency, then global consistency may be achieved in polynomial time. In general, it may take exponential time.

手下 メラト

 Ω

Definition

We say that a structure Γ has local-to-global consistency w.r.t to k if every strongly k-consistent variant ψ of ϕ is also globally consistent.

Why local-to-global consistency is a desirable property?

- A set of constraints is globally consistent means:
	- it is completely explicit,
	- a solution may be found by greedily assigning values to the variables one at a time (without backtracking).
- If Γ has local-to-global consistency, then global consistency may be achieved in polynomial time. In general, it may take exponential time.

This property was studied in temporal reasoning by:

• Koubarakis'95: point algebra $+$ disjunction of disequalities has local-to-global consistency, e.g. $(\mathbb{Q}; <, <, \neq, \{(x_1, x_2, x_3, x_4) \mid x_1 \neq x_2 \lor x_3 \neq x_4\}).$

Definition

We say that a structure Γ has local-to-global consistency w.r.t to k if every strongly k-consistent variant ψ of ϕ is also globally consistent.

Why local-to-global consistency is a desirable property?

- A set of constraints is globally consistent means:
	- it is completely explicit,
	- a solution may be found by greedily assigning values to the variables one at a time (without backtracking).
- If Γ has local-to-global consistency, then global consistency may be achieved in polynomial time. In general, it may take exponential time.

This property was studied in temporal reasoning by:

- Koubarakis'95: point algebra $+$ disjunction of disequalities has local-to-global consistency, e.g. $(\mathbb{Q}; <, <, \neq, \{(x_1, x_2, x_3, x_4) \mid x_1 \neq x_2 \lor x_3 \neq x_4\}).$
- van Beek+Cohen'90, and Bessiére+Isli+Ligozat'96 identify subclasses of Allen's interval algebra for which establishing path-consistency implies global consistency.

 Ω

ORD-Horn Languages

Definition

A structure $\Gamma = (\mathbb{Q}; R_1, \ldots, R_n)$ is called an ORD-Horn language if each R_i may be defined as a conjunction of ORD-Horn clauses each of which is of the form:

 $(x_1 \neq y_1 \vee \cdots \vee x_m \neq y_m \vee xRy)$, where $R \in \{<,\leq,=,\neq\}.$

 -17.5

4 கி ⊧

※ 差す ※ 差す …

(B) Ω

ORD-Horn Languages

Definition

A structure $\Gamma = (\mathbb{Q}; R_1, \ldots, R_n)$ is called an ORD-Horn language if each R_i may be defined as a conjunction of ORD-Horn clauses each of which is of the form:

 $(x_1 \neq y_1 \vee \cdots \vee x_m \neq y_m \vee xRy)$, where $R \in \{<, <, =, \neq\}.$

ORD-Horn languages were heavily studied.

- By Bürckert and Nebel (1994) in the context of Allen's interval algebra.
- By Balbiani, Condotta and del Cerro (1998,1999,2002) in the context of the block algebras.
- Also by Ligozat (1994,1996); and many others.

医细胞 医细胞 医心包

G.

ORD-Horn Languages

Definition

A structure $\Gamma = (\mathbb{Q}; R_1, \ldots, R_n)$ is called an ORD-Horn language if each R_i may be defined as a conjunction of ORD-Horn clauses each of which is of the form:

 $(x_1 \neq y_1 \vee \cdots \vee x_m \neq y_m \vee xRy)$, where $R \in \{ \langle \langle \langle \rangle = \rangle \neq \}$.

ORD-Horn languages were heavily studied.

- By Bürckert and Nebel (1994) in the context of Allen's interval algebra.
- By Balbiani, Condotta and del Cerro (1998,1999,2002) in the context of the block algebras.
- Also by Ligozat (1994,1996); and many others.

Local-to-Global Consistency in ORD-Horn

- For every ORD-Horn Language Γ there exists k such that establishing strong k-consistency solves CSP(Γ).
- Some ORD-Horn languages have local-to-global consistency, e.g., CSP(\mathbb{Q} ; \leq , $\{(x_1, x_2, x_3, x_4) \mid x_1 \neq x_2 \lor x_3 \neq x_4\}$) (Koubarakis'95).
- Some do not, e.g., $CSP(\mathbb{Q}; \{(x_1, x_2, x_3) | x_1 \neq x_2 \lor x_1 = x_3\})$.

Basic ORD-Horn Languages and The Main Result of The Paper

Definition

An ORD-Horn language $\Gamma = (\mathbb{Q}; R_1, \ldots, R_k)$ is called Basic ORD-Horn if it can be defined as a conjunction of Basic ORD-Horn clauses each of which is in one of the following forms:

• (xRy) , where $R \in \{ \langle \langle \cdot, \cdot \rangle = \}$,

•
$$
(x_1 \neq y_1 \lor \cdots \lor x_k \neq y_k)
$$
, or

$$
\bullet \big((x \neq x_1 \vee \cdots \vee x \neq x_k) \vee (x < y) \vee (y \neq y_1 \vee \cdots \vee y \neq y_l)\big).
$$

 \leftarrow \Box

手下 メラト

Ε

 Ω

Basic ORD-Horn Languages and The Main Result of The Paper

Definition

An ORD-Horn language $\Gamma = (\mathbb{Q}; R_1, \ldots, R_k)$ is called Basic ORD-Horn if it can be defined as a conjunction of Basic ORD-Horn clauses each of which is in one of the following forms:

• (xRy) , where $R \in \{ \langle \langle \cdot, \cdot \rangle = \}$,

•
$$
(x_1 \neq y_1 \lor \cdots \lor x_k \neq y_k)
$$
, or

 \bullet $((x \neq x_1 \vee \cdots \vee x \neq x_k) \vee (x \leq y) \vee (y \neq y_1 \vee \cdots \vee y \neq y_l)).$

The main result of this paper.

Theorem

Let Γ be an ORD-Horn language. Then the following are equivalent.

- **1** Γ has local-to-global consistency.
- **2** Γ is Basic ORD-Horn.

 -111

医细胞 医单位

重

 209

In the Proof of the Main Theorem We Use: Polymorphisms, ...

Definition of a polymorphism

Let
$$
R \subseteq \mathbb{Q}^n
$$
. A function $f : \mathbb{Q}^m \to \mathbb{Q}$ is a polynomial of R if:
\nfor all tuples $a^1, \ldots, a^m \in R$ of the form\n
$$
\begin{bmatrix}\n(a_1^1, \ldots, a_n^1) \in R \\
\vdots \\
(a_1^m \ldots, a_n^m) \in R\n\end{bmatrix}
$$
\nit holds that $(f(a_1^1, \ldots, a_1^m), \ldots, f(a_n^1, \ldots, a_n^m)) \in R$.
\nA function f is a polynomial of Γ if it is a polynomial of every R in Γ .

4.000

4 何 ト

医蛋白 医重光

重

 2990

In the Proof of the Main Theorem We Use: Polymorphisms, ...

Definition of a polymorphism

Let
$$
R \subseteq \mathbb{Q}^n
$$
. A function $f : \mathbb{Q}^m \to \mathbb{Q}$ is a polymorphism of R if:
\nfor all tuples $a^1, \ldots, a^m \in R$ of the form\n
$$
\begin{bmatrix}\n(a_1^1, \ldots, a_n^1) \in R \\
\vdots \\
(a_1^m, \ldots, a_n^m)\in R\n\end{bmatrix}
$$
\nit holds that $(f(a_1^1, \ldots, a_1^m), \ldots, f(a_n^1, \ldots, a_n^m)) \in R$.
\nA function f is a polymorphism of Γ if it is a polymorphism of every R in Γ .

Definition

A *k*-ary function $f: \mathbb{Q}^k \to \mathbb{Q}$ where $k \geq 3$ is called a quasi near-unanimity function (QNUF) if and only if it satisfies

 $\forall x \forall y. f(y, x, x, ..., x) = f(x, y, x, ..., x) = ⋯ = f(x, x, x, ..., y) = f(x, ..., x)$

4. 17. 6.

 $\mathcal{A} \oplus \mathcal{B}$, $\mathcal{A} \oplus \mathcal{B}$, $\mathcal{A} \oplus \mathcal{B}$

G.

In the Proof of the Main Theorem We Use: Polymorphisms, ...

Definition of a polymorphism

Let
$$
R \subseteq \mathbb{Q}^n
$$
. A function $f : \mathbb{Q}^m \to \mathbb{Q}$ is a polymorphism of R if:
\nfor all tuples $a^1, \ldots, a^m \in R$ of the form\n
$$
\begin{bmatrix}\n(a_1^1, \ldots, a_n^1) \in R \\
\vdots \\
(a_1^m, \ldots, a_n^m)\in R\n\end{bmatrix}
$$
\nit holds that $(f(a_1^1, \ldots, a_1^m), \ldots, f(a_n^1, \ldots, a_n^m)) \in R$.
\nA function f is a polymorphism of Γ if it is a polymorphism of every R in Γ .

Definition

A *k*-ary function $f: \mathbb{Q}^k \to \mathbb{Q}$ where $k \geq 3$ is called a quasi near-unanimity function (QNUF) if and only if it satisfies

 $\forall x \forall y. f(y, x, x, ..., x) = f(x, y, x, ..., x) = ⋯ = f(x, x, x, ..., y) = f(x, ..., x)$

Theorem. (Bodirsky+Dalmau'06)

Let $k > 3$. An ω -categorical structure Γ has a k-ary oligopotent QNUF as a polymorphism if and only if Γ has local-to-global consistency w.r.t. k.

 000

Definition

An *n*-ary relation R is k -decomposable if it contains all tuples t such that for every subset I of $\{1, \ldots, n\}$ with $|I| \leq k$ there is a tuple $s \in R$ such that $t[i] = s[i]$ for all $i \in I$. A structure Γ is k-decomposable if every relation in Γ is k-decomposable.

4 A F

 -111

化重变 化重变

Ε

Definition

An *n*-ary relation R is k -decomposable if it contains all tuples t such that for every subset I of $\{1, \ldots, n\}$ with $|I| \leq k$ there is a tuple $s \in R$ such that $t[i] = s[i]$ for all $i \in I$. A structure Γ is k-decomposable if every relation in Γ is k-decomposable.

Example: $R = \{(0, 1, 0, 0), (0, 0, 1, 0), (1, 0, 0, 0)\}$ is not 2-decomposable. It does not contain $(0, 0, 0, 0)$.

化重变 化重变化

重

 Ω

Definition

An *n*-ary relation R is k -decomposable if it contains all tuples t such that for every subset I of $\{1, \ldots, n\}$ with $|I| \leq k$ there is a tuple $s \in R$ such that $t[i] = s[i]$ for all $i \in I$. A structure Γ is k-decomposable if every relation in Γ is k-decomposable.

Example: $R = \{(0, 1, 0, 0), (0, 0, 1, 0), (1, 0, 0, 0)\}$ is not 2-decomposable. It does not contain $(0, 0, 0, 0)$.

Theorem. (Bodirsky+Chen'07)

An ω-categorical structure Γ has local-to-global consistency w.r.t. k if and only if Γ is $(k-1)$ -decomposable.

化重新 化重新

 209

Definition

An *n*-ary relation R is k -decomposable if it contains all tuples t such that for every subset I of $\{1, \ldots, n\}$ with $|I| \leq k$ there is a tuple $s \in R$ such that $t[i] = s[i]$ for all $i \in I$. A structure Γ is k-decomposable if every relation in Γ is k-decomposable.

Example: $R = \{(0, 1, 0, 0), (0, 0, 1, 0), (1, 0, 0, 0)\}$ is not 2-decomposable. It does not contain $(0, 0, 0, 0)$.

Theorem. (Bodirsky+Chen'07)

An ω-categorical structure Γ has local-to-global consistency w.r.t. k if and only if Γ is $(k-1)$ -decomposable.

To obtain the result we show that:

- every Basic ORD-Horn language has an oligopotent QNUF as a polymorphism, and that
- \bullet every other ORD-Horn language is not *k*-decomposable for any *k*.

イロト イ押 トイヨ トイヨ トー

目

 Ω

Thank you for your attention.

メロメ メ御 メメ きょうくきょう

 $E = \Omega Q$