Syntactically Characterizing Local-to-Global Consistency in ORD-Horn

Michał Wrona

Linköping University SE-581 83 Linköping, Sweden michal.wrona@liu.se

CP 2012, Québec City

프 > > ㅋ ㅋ >

A >

э

イロン イロン イヨン イヨン

= 990

< 注→ < 注→

< 17 ▶

Outline

2 Local-to-Global Consistency

< E > < E >

A >

Constraint Satisfaction $Problem(\Gamma)$

Let Γ be a relational τ -structure over some domain D.

$CSP(\Gamma)$ — for finite τ

Instance: A primitive positive formula ϕ of the form $R_1(x_1^1, \ldots, x_{n_1}^1) \land \ldots \land R_k(x_1^k, \ldots, x_{n_k}^k)$, where $R_1, \ldots, R_k \in \tau$. Question: Is ϕ satisfiable in Γ ?

A >

Constraint Satisfaction $Problem(\Gamma)$

Let Γ be a relational τ -structure over some domain D.

$CSP(\Gamma)$ — for finite τ

Instance: A primitive positive formula ϕ of the form $R_1(x_1^1, \ldots, x_{n_1}^1) \land \ldots \land R_k(x_1^k, \ldots, x_{n_k}^k)$, where $R_1, \ldots, R_k \in \tau$. Question: Is ϕ satisfiable in Γ ?

Many problems may be modelled as $CSP(\Gamma)$:

- boolean satisfiability problems, e.g., k-SAT;
- graph homomorphism problems, e.g., k-colouring;
- network satisfaction problems in spatial-temporal reasoning, for *qualitative* calculi such as point algebra, Allen's interval algebra, region connection calculi.

向下 イヨト イヨト

Constraint Satisfaction $Problem(\Gamma)$

Let Γ be a relational τ -structure over some domain D.

$CSP(\Gamma)$ — for finite τ

Instance: A primitive positive formula ϕ of the form $R_1(x_1^1, \ldots, x_{n_1}^1) \land \ldots \land R_k(x_1^k, \ldots, x_{n_k}^k)$, where $R_1, \ldots, R_k \in \tau$. Question: Is ϕ satisfiable in Γ ?

Many problems may be modelled as $CSP(\Gamma)$:

- boolean satisfiability problems, e.g., k-SAT;
- graph homomorphism problems, e.g., k-colouring;
- network satisfaction problems in spatial-temporal reasoning, for *qualitative* calculi such as point algebra, Allen's interval algebra, region connection calculi.

All structures considered here have a first-order definition in (\mathbb{Q} ; <), they are all ω -categorical.

A countably infinite structure Γ is ω -categorical if all countable models of the first-order theory of Γ are isomorphic.

Network Satisfaction Problem for Point Algebra

A point algebra \mathcal{P} is a set of all binary relations $\mathcal{R}_2(\mathbb{Q})$ with a first order definition over $(\mathbb{Q}; <)$:

• $<,>,\neq,\leq,\geq,=,\mathbb{Q}^2,\emptyset.$

Network Satisfaction Problem for Point Algebra

A point algebra \mathcal{P} is a set of all binary relations $\mathcal{R}_2(\mathbb{Q})$ with a first order definition over $(\mathbb{Q}; <)$:

• $<,>,\neq,\leq,\geq,=,\mathbb{Q}^2,\emptyset.$

The Network Satisfaction Problem (NSP) for $\mathcal P$

Instance: a network $\mathcal{N} = (V; L)$, where $L : V^2 \to \mathcal{R}_2(\mathbb{Q})$. Question: is there $f : V \to \mathbb{Q}$ such that for all (v_1, v_2) we have $(f(v_1), f(v_2)) \in L(v_1, v_2)$?

Network Satisfaction Problem for Point Algebra

A point algebra \mathcal{P} is a set of all binary relations $\mathcal{R}_2(\mathbb{Q})$ with a first order definition over $(\mathbb{Q}; <)$:

• $<,>,\neq,\leq,\geq,=,\mathbb{Q}^2,\emptyset.$

The Network Satisfaction Problem (NSP) for $\mathcal P$

Instance: a network $\mathcal{N} = (V; L)$, where $L : V^2 \to \mathcal{R}_2(\mathbb{Q})$. Question: is there $f : V \to \mathbb{Q}$ such that for all (v_1, v_2) we have $(f(v_1), f(v_2)) \in L(v_1, v_2)$?

Every instance of NSP(\mathcal{P}) may be rewritten into an instance of CSP(\mathbb{Q} ; <, >, \neq , ≤, ≥, =, \mathbb{Q}^2 , \emptyset).

Network Satisfaction Problem for Point Algebra

A point algebra \mathcal{P} is a set of all binary relations $\mathcal{R}_2(\mathbb{Q})$ with a first order definition over $(\mathbb{Q}; <)$:

• $<,>,\neq,\leq,\geq,=,\mathbb{Q}^2,\emptyset.$

The Network Satisfaction Problem (NSP) for $\mathcal P$

Instance: a network $\mathcal{N} = (V; L)$, where $L : V^2 \to \mathcal{R}_2(\mathbb{Q})$. Question: is there $f : V \to \mathbb{Q}$ such that for all (v_1, v_2) we have $(f(v_1), f(v_2)) \in L(v_1, v_2)$?

Every instance of NSP(\mathcal{P}) may be rewritten into an instance of CSP(\mathbb{Q} ; <, >, \neq , \leq , \geq , =, \mathbb{Q}^2 , \emptyset).

$$(x < y) \land (y \neq v) \land (z = v) \land (x \le z) \land (z \le y) \land (\mathbb{Q}^2(x, v))$$

is satisfiable in
$$(\mathbb{Q}: < < > > = - \neq \emptyset \ \mathbb{Q}^2)$$

< 3 > < 3 >

3

$$(\mathbb{Q};<,\leq,>,\geq,=,\neq,\emptyset,\mathbb{Q}^2).$$

is satisfiable iff

Consistency, Strong Consistency, and Global Consistency

Definition

An instance ϕ of CSP(Γ), for some Γ , over a set of variables V is:

- k-consistent if every partial solution to (k-1) variables may be extended to any other variable;
- strongly k-consistent if it is *i*-consistent for every $i \le k$;
- globally consistent if it is strongly |V|-consistent.

Definition

An instance ϕ of CSP(Γ), for some Γ , over a set of variables V is:

- *k*-consistent if every partial solution to (k-1) variables may be extended to any other variable;
- strongly k-consistent if it is *i*-consistent for every $i \le k$;
- globally consistent if it is strongly |V|-consistent.

Example: (Koubarakis'95)

 (x1 ≤ x2) ∧ (x2 ≤ x3) ∧ (x4 ≤ x5) ∧ (x5 ≤ x6) ∧ (x2 ≠ x5) — 2-consistent but not 3-consistent. A partial solution: x1 = 3; x3 = 0 cannot be extended to x2.

Definition

An instance ϕ of CSP(Γ), for some Γ , over a set of variables V is:

- *k*-consistent if every partial solution to (k-1) variables may be extended to any other variable;
- strongly k-consistent if it is *i*-consistent for every $i \le k$;
- globally consistent if it is strongly |V|-consistent.

Example: (Koubarakis'95)

- (x1 ≤ x2) ∧ (x2 ≤ x3) ∧ (x4 ≤ x5) ∧ (x5 ≤ x6) ∧ (x2 ≠ x5) 2-consistent but not 3-consistent. A partial solution: x1 = 3; x3 = 0 cannot be extended to x2.
- But can be made (strongly) 3-consistent by adding (x₁ ≤ x₃) ∧ (x₄ ≤ x₆). Now, x₁ = 3; x₃ = 0 is not a partial solution anymore.

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

An instance ϕ of CSP(Γ), for some Γ , over a set of variables V is:

- *k*-consistent if every partial solution to (k-1) variables may be extended to any other variable;
- strongly k-consistent if it is *i*-consistent for every $i \le k$;
- globally consistent if it is strongly |V|-consistent.

Example: (Koubarakis'95)

- (x1 ≤ x2) ∧ (x2 ≤ x3) ∧ (x4 ≤ x5) ∧ (x5 ≤ x6) ∧ (x2 ≠ x5) 2-consistent but not 3-consistent.
 A partial solution: x1 = 3; x3 = 0 cannot be extended to x2.
- But can be made (strongly) 3-consistent by adding (x₁ ≤ x₃) ∧ (x₄ ≤ x₆). Now, x₁ = 3; x₃ = 0 is not a partial solution anymore.
- Not 4-consistent. A part solution: $x_2 = x_4 = x_6 = 1$ can't be extended to x_5 .

イロト 不得 とくほと くほとう ほう

Definition

An instance ϕ of CSP(Γ), for some Γ , over a set of variables V is:

- *k*-consistent if every partial solution to (k-1) variables may be extended to any other variable;
- strongly k-consistent if it is *i*-consistent for every $i \le k$;
- globally consistent if it is strongly |V|-consistent.

Example: (Koubarakis'95)

- (x1 ≤ x2) ∧ (x2 ≤ x3) ∧ (x4 ≤ x5) ∧ (x5 ≤ x6) ∧ (x2 ≠ x5) 2-consistent but not 3-consistent.
 A partial solution: x1 = 3; x3 = 0 cannot be extended to x2.
- But can be made (strongly) 3-consistent by adding $(x_1 \le x_3) \land (x_4 \le x_6)$. Now, $x_1 = 3$; $x_3 = 0$ is not a partial solution anymore.
- Not 4-consistent. A part solution: $x_2 = x_4 = x_6 = 1$ can't be extended to x_5 .
- Can be made globally consistent by adding $(x_1 \neq x_5 \lor x_3 \neq x_5) \land (x_4 \neq x_2 \lor x_6 \neq x_2) \land (x_1 \neq x_3 \lor x_1 \neq x_4 \lor x_1 \neq x_6).$

Establishing Strong Consistency

Theorem. (Bodirsky+Dalmau'06)

For every ω -categorical structure Γ and k there is an expansion Δ of Γ containing an empty relation R_e , and a polynomial-time algorithm which converts every instance ϕ of CSP(Γ) into an equivalent strongly *k*-consistent instance ψ of CSP(Δ). The algorithm tries to infer R_e .

Establishing Strong Consistency

Theorem. (Bodirsky+Dalmau'06)

For every ω -categorical structure Γ and k there is an expansion Δ of Γ containing an empty relation R_e , and a polynomial-time algorithm which converts every instance ϕ of CSP(Γ) into an equivalent strongly k-consistent instance ψ of CSP(Δ). The algorithm tries to infer R_e .

- **(**) If ψ contains an occurrence of R_e , then ϕ does not have a solution.
- For some Γ there exists k such that establishing strong k-consistency solves CSP(Γ), that is, the converse of 1 is also true.
- **③** For some Γ there exists k such that ψ is also globally consistent.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Establishing Strong Consistency

Theorem. (Bodirsky+Dalmau'06)

For every ω -categorical structure Γ and k there is an expansion Δ of Γ containing an empty relation R_e , and a polynomial-time algorithm which converts every instance ϕ of CSP(Γ) into an equivalent strongly *k*-consistent instance ψ of CSP(Δ). The algorithm tries to infer R_e .

- **(**) If ψ contains an occurrence of R_e , then ϕ does not have a solution.
- O For some Γ there exists k such that establishing strong k-consistency solves CSP(Γ), that is, the converse of 1 is also true.
- **③** For some Γ there exists k such that ψ is also globally consistent.

Examples:

- $\Gamma = (\mathbb{Q}; \{(x, y, z) \mid x > y \lor x > z\})$ satisfies (1) but not (2). (Bodirsky+Kára'08)
- $\Gamma = (\mathbb{Q}; \neq, \{(x, y, z) \mid x \neq y \lor x = z\},)$ satisfies (2) but not (3). (e.g., this paper)
- $\Gamma = (\mathbb{Q}; <, \le, \neq, \{(x_1, x_2, x_3, x_4) \mid x_1 \neq x_2 \lor x_3 \neq x_4\})$ satisfies (3) (Koubarakis'95)

Local-to-Global Consistency

Definition

We say that a structure Γ has local-to-global consistency w.r.t to k if every strongly k-consistent variant ψ of ϕ is also globally consistent.

< 17 >

Local-to-Global Consistency

Definition

We say that a structure Γ has local-to-global consistency w.r.t to k if every strongly k-consistent variant ψ of ϕ is also globally consistent.

Why local-to-global consistency is a desirable property?

A >

э

Definition

We say that a structure Γ has local-to-global consistency w.r.t to k if every strongly k-consistent variant ψ of ϕ is also globally consistent.

Why local-to-global consistency is a desirable property?

- A set of constraints is globally consistent means:
 - it is completely explicit,
 - a solution may be found by greedily assigning values to the variables one at a time (without backtracking).

프 > > ㅋ ㅋ >

Definition

We say that a structure Γ has local-to-global consistency w.r.t to k if every strongly k-consistent variant ψ of ϕ is also globally consistent.

Why local-to-global consistency is a desirable property?

- A set of constraints is globally consistent means:
 - it is completely explicit,
 - a solution may be found by greedily assigning values to the variables one at a time (without backtracking).
- If Γ has local-to-global consistency, then global consistency may be achieved in polynomial time. In general, it may take exponential time.

프 > > ㅋ ㅋ >

Definition

We say that a structure Γ has local-to-global consistency w.r.t to k if every strongly k-consistent variant ψ of ϕ is also globally consistent.

Why local-to-global consistency is a desirable property?

- A set of constraints is globally consistent means:
 - it is completely explicit,
 - a solution may be found by greedily assigning values to the variables one at a time (without backtracking).
- If Γ has local-to-global consistency, then global consistency may be achieved in polynomial time. In general, it may take exponential time.

This property was studied in temporal reasoning by:

Koubarakis'95: point algebra + disjunction of disequalities has local-to-global consistency, e.g.
 (𝔅; <, <, ≠, {(x₁, x₂, x₃, x₄) | x₁ ≠ x₂ ∨ x₃ ≠ x₄}).

Definition

We say that a structure Γ has local-to-global consistency w.r.t to k if every strongly k-consistent variant ψ of ϕ is also globally consistent.

Why local-to-global consistency is a desirable property?

- A set of constraints is globally consistent means:
 - it is completely explicit,
 - a solution may be found by greedily assigning values to the variables one at a time (without backtracking).
- If Γ has local-to-global consistency, then global consistency may be achieved in polynomial time. In general, it may take exponential time.

This property was studied in temporal reasoning by:

- Koubarakis'95: point algebra + disjunction of disequalities has local-to-global consistency, e.g.
 (Q; <, ≤, ≠, {(x₁, x₂, x₃, x₄) | x₁ ≠ x₂ ∨ x₃ ≠ x₄}).
- van Beek+Cohen'90, and Bessiére+Isli+Ligozat'96 identify subclasses of Allen's interval algebra for which establishing path-consistency implies global consistency.

ORD-Horn Languages

Definition

A structure $\Gamma = (\mathbb{Q}; R_1, \dots, R_n)$ is called an ORD-Horn language if each R_i may be defined as a conjunction of ORD-Horn clauses each of which is of the form:

 $(x_1 \neq y_1 \lor \cdots \lor x_m \neq y_m \lor xRy)$, where $R \in \{<, \leq, =, \neq\}$.

ORD-Horn Languages

Definition

A structure $\Gamma = (\mathbb{Q}; R_1, \dots, R_n)$ is called an ORD-Horn language if each R_i may be defined as a conjunction of ORD-Horn clauses each of which is of the form:

 $(x_1 \neq y_1 \lor \cdots \lor x_m \neq y_m \lor xRy)$, where $R \in \{<, \leq, =, \neq\}$.

ORD-Horn languages were heavily studied.

- By Bürckert and Nebel (1994) in the context of Allen's interval algebra.
- By Balbiani, Condotta and del Cerro (1998,1999,2002) in the context of the block algebras.
- Also by Ligozat (1994,1996); and many others.

A B > A B >

ORD-Horn Languages

Definition

A structure $\Gamma = (\mathbb{Q}; R_1, \dots, R_n)$ is called an ORD-Horn language if each R_i may be defined as a conjunction of ORD-Horn clauses each of which is of the form:

 $(x_1 \neq y_1 \lor \cdots \lor x_m \neq y_m \lor xRy)$, where $R \in \{<, \leq, =, \neq\}$.

ORD-Horn languages were heavily studied.

- By Bürckert and Nebel (1994) in the context of Allen's interval algebra.
- By Balbiani, Condotta and del Cerro (1998,1999,2002) in the context of the block algebras.
- Also by Ligozat (1994,1996); and many others.

Local-to-Global Consistency in ORD-Horn

- For every ORD-Horn Language Γ there exists *k* such that establishing strong *k*-consistency solves CSP(Γ).
- Some ORD-Horn languages have local-to-global consistency, e.g., $CSP(\mathbb{Q}; \leq, \{(x_1, x_2, x_3, x_4) \mid x_1 \neq x_2 \lor x_3 \neq x_4\})$ (Koubarakis'95).
- Some do not, e.g., $CSP(\mathbb{Q}; \{(x_1, x_2, x_3) \mid x_1 \neq x_2 \lor x_1 = x_3\}).$

Basic ORD-Horn Languages and The Main Result of The Paper

Definition

An ORD-Horn language $\Gamma = (\mathbb{Q}; R_1, \dots, R_k)$ is called Basic ORD-Horn if it can be defined as a conjunction of Basic ORD-Horn clauses each of which is in one of the following forms:

• (*xRy*), where $R \in \{<, \leq, =\}$,

•
$$(x_1 \neq y_1 \lor \cdots \lor x_k \neq y_k)$$
, or

•
$$((x \neq x_1 \lor \cdots \lor x \neq x_k) \lor (x < y) \lor (y \neq y_1 \lor \cdots \lor y \neq y_l))$$

() <) <)
 () <)
 () <)
</p>

э

Basic ORD-Horn Languages and The Main Result of The Paper

Definition

An ORD-Horn language $\Gamma = (\mathbb{Q}; R_1, \dots, R_k)$ is called Basic ORD-Horn if it can be defined as a conjunction of Basic ORD-Horn clauses each of which is in one of the following forms:

• (*xRy*), where $R \in \{<, \leq, =\}$,

•
$$(x_1 \neq y_1 \lor \cdots \lor x_k \neq y_k)$$
, or

• $((x \neq x_1 \lor \cdots \lor x \neq x_k) \lor (x < y) \lor (y \neq y_1 \lor \cdots \lor y \neq y_l)).$

The main result of this paper.

Theorem

Let Γ be an ORD-Horn language. Then the following are equivalent.

- I has local-to-global consistency.
- Γ is Basic ORD-Horn.

・ 同 ト ・ ヨ ト ・ ヨ ト …

-

In the Proof of the Main Theorem We Use: Polymorphisms, ...

Definition of a polymorphism

Let
$$R \subseteq \mathbb{Q}^n$$
. A function $f : \mathbb{Q}^m \to \mathbb{Q}$ is a polymorphism of R if:
for all tuples $a^1, \ldots, a^m \in R$ of the form
$$\begin{bmatrix} (a_1^1, \ldots, a_n^1) \in R \\ \vdots & \vdots \\ (a_1^m & \ldots, a_n^m) \in R \end{bmatrix}$$
it holds that $(f(a_1^1, \ldots, a_1^m), \ldots, f(a_n^1, \ldots, a_n^m)) \in R$.
A function f is a polymorphism of Γ if it is a polymorphism of every R in Γ

(신문) (문)

< 17 >

æ

In the Proof of the Main Theorem We Use: Polymorphisms, ...

Definition of a polymorphism

Let
$$R \subseteq \mathbb{Q}^n$$
. A function $f : \mathbb{Q}^m \to \mathbb{Q}$ is a polymorphism of R if:
for all tuples $a^1, \ldots, a^m \in R$ of the form
$$\begin{bmatrix} (a_1^1, \ldots, a_n^1) \in R \\ \vdots & \vdots \\ (a_1^m & \ldots, a_n^m) \in R \end{bmatrix}$$
it holds that $(f(a_1^1, \ldots, a_1^m), \ldots, f(a_n^1, \ldots, a_n^m)) \in R$.
A function f is a polymorphism of Γ if it is a polymorphism of every R in Γ .

Definition

A k-ary function $f : \mathbb{Q}^k \to \mathbb{Q}$ where $k \ge 3$ is called a quasi near-unanimity function (QNUF) if and only if it satisfies

$$\forall x \forall y. f(y, x, x, \ldots, x) = f(x, y, x, \ldots, x) = \cdots = f(x, x, x, \ldots, y) = f(x, \ldots, x)$$

イロン 不同 とくほう イロン

In the Proof of the Main Theorem We Use: Polymorphisms, ...

Definition of a polymorphism

Let
$$R \subseteq \mathbb{Q}^n$$
. A function $f : \mathbb{Q}^m \to \mathbb{Q}$ is a polymorphism of R if:
for all tuples $a^1, \ldots, a^m \in R$ of the form
$$\begin{bmatrix} (a_1^1, \ldots, a_n^1) \in R \\ \vdots & \vdots \\ (a_1^m \ldots, a_n^m) \in R \end{bmatrix}$$
it holds that $(f(a_1^1, \ldots, a_1^m), \ldots, f(a_n^1, \ldots, a_n^m)) \in R$.
A function f is a polymorphism of Γ if it is a polymorphism of every R in Γ .

Definition

A k-ary function $f : \mathbb{Q}^k \to \mathbb{Q}$ where $k \ge 3$ is called a quasi near-unanimity function (QNUF) if and only if it satisfies

$$\forall x \forall y. f(y, x, x, \ldots, x) = f(x, y, x, \ldots, x) = \cdots = f(x, x, x, \ldots, y) = f(x, \ldots, x)$$

Theorem. (Bodirsky+Dalmau'06)

Let $k \ge 3$. An ω -categorical structure Γ has a k-ary oligopotent QNUF as a polymorphism if and only if Γ has local-to-global consistency w.r.t. k.

Definition

An *n*-ary relation *R* is *k*-decomposable if it contains all tuples *t* such that for every subset *I* of $\{1, \ldots, n\}$ with $|I| \leq k$ there is a tuple $s \in R$ such that t[i] = s[i] for all $i \in I$. A structure Γ is *k*-decomposable if every relation in Γ is *k*-decomposable.

< A >

э

Definition

An *n*-ary relation *R* is *k*-decomposable if it contains all tuples *t* such that for every subset *I* of $\{1, \ldots, n\}$ with $|I| \le k$ there is a tuple $s \in R$ such that t[i] = s[i] for all $i \in I$. A structure Γ is *k*-decomposable if every relation in Γ is *k*-decomposable.

Example: $R = \{(0, 1, 0, 0), (0, 0, 1, 0), (1, 0, 0, 0)\}$ is not 2-decomposable. It does not contain (0, 0, 0, 0).

-

Definition

An *n*-ary relation *R* is *k*-decomposable if it contains all tuples *t* such that for every subset *I* of $\{1, \ldots, n\}$ with $|I| \le k$ there is a tuple $s \in R$ such that t[i] = s[i] for all $i \in I$. A structure Γ is *k*-decomposable if every relation in Γ is *k*-decomposable.

Example: $R = \{(0, 1, 0, 0), (0, 0, 1, 0), (1, 0, 0, 0)\}$ is not 2-decomposable. It does not contain (0, 0, 0, 0).

Theorem. (Bodirsky+Chen'07)

An ω -categorical structure Γ has local-to-global consistency w.r.t. k if and only if Γ is (k-1)-decomposable.

(*) = (*) = (*)

Definition

An *n*-ary relation *R* is *k*-decomposable if it contains all tuples *t* such that for every subset *I* of $\{1, \ldots, n\}$ with $|I| \le k$ there is a tuple $s \in R$ such that t[i] = s[i] for all $i \in I$. A structure Γ is *k*-decomposable if every relation in Γ is *k*-decomposable.

Example: $R = \{(0, 1, 0, 0), (0, 0, 1, 0), (1, 0, 0, 0)\}$ is not 2-decomposable. It does not contain (0, 0, 0, 0).

Theorem. (Bodirsky+Chen'07)

An ω -categorical structure Γ has local-to-global consistency w.r.t. k if and only if Γ is (k-1)-decomposable.

To obtain the result we show that:

- every Basic ORD-Horn language has an oligopotent QNUF as a polymorphism, and that
- every other ORD-Horn language is not k-decomposable for any k.

イロン 不同 とくほう イロン

-

Thank you for your attention.

<ロ> <同> <同> < 回> < 回>

Ξ.