

A FILTERING TECHNIQUE FOR FRAGMENT ASSEMBLY- BASED PROTEINS LOOP MODELING WITH CONSTRAINTS

F. Campeotto^{1,2} *A. Dal Palù*³ A. Dovier² F. Fioretto¹ E. Pontelli¹

1. Dept. Computer Science, NMSU

2. Dept. Math and Computer Science, Univ. Udine

3. Dept. Math and Computer Science, Univ. Parma

CP'12

(日) (日) (日) (日) (日) (日) (日)

SUMMARY

BACKGROUND

JOINED MULTIBODY CONSTRAINT

NP-COMPLETENESS

FILTERING

RESULTS

CONCLUSIONS

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

CONCLUSION

PROTEINS

AMINO ACIDS

Proteins are molecules made of amino acids

 $C_3H_7NO_2 \rightarrow 13 \text{ atoms}$ $C_{11}H_{12}N_2O_2 \rightarrow 27 \text{ atoms}$

 Amino acids show different chemical properties depending on the specific atoms

FILTERING

lts Conclu

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

PROTEINS PEPTIDE BOND

- When connected together, amino acids can rotate along some bonds (Φ and Ψ angles).
- Rotation is rigid and the angles domains are continuous in nature.
- Some angles are forbidden because of atoms clashes

Figure copyrighted by Irving Geis. Copyright 1999 John Wiley and Sons, Inc. All rights reserved.

PROTEINS BACKBONE

Combining *n* amino acids gives at least 2*n* degrees of freedom molecule

- Constraints on angles and on atoms positions
- It can be modeled as an extension of a Self Avoiding Walk

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

FILTERING

Conclusio

PROTEINS

TERTIARY STRUCTURE

Amino acid primary sequence: GPEILCGAELVDALQFVCGDRGFYFNKPTGYGSSS...

planes...

... tertiary structure

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

-

· Proteins FOLD spontaneously into their functional pose

PROTEINS Our contribution

- Finite Domains and non linear constraints model
- Goal: Fast geometrical exploration (independent of energy)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Introduce approximated propagators for 3D points

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

PROTEINS

OUR MODEL

- Each torsional angle is associated to a discrete set of angles
- Chemists are happy with a large set (\sim 100 sampled rotations per bond)
- Combinatorial explosion: 100²ⁿ

A simple instance of discretized angles

PROTEINS Constraints

- 1. Backbone structural constraints
- 2. Amino acids local relationships
- 3. Spatial positions of atoms
- 4. Non overlap of atoms

・ロット (雪) (日) (日)

P-COMPLETENESS

FILTERING

Conclus

CONSTRAINTS FRAGMENTS AND BODY

- Local structural behavior \Rightarrow fragments
- A set of fragments (Body) is a *local spatial dictionary*

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

3

FRAGMENTS BODY

- Body = FD variable, Fragments = Domain
- A body can be associated to 1 .. n amino acids
- It can be seen as a constraint over Φ and Ψ angles

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- It is similar to a table constraint over angles
- It affects 3D positions of atoms

FILTERING

SULTS CON

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

FRAGMENT ASSEMBLY MODEL BODY COMBINATION

Example of domains for two overlapping bodies

FILTERING

esults Coi

FRAGMENT ASSEMBLY MODEL

BODY COMBINATION

Constrain two selected fragments: they must overlap in the space at anchors

MULTIBODY

- A Multibody is a set of Bodies that covers a protein
- The protein is partitioned into Bodies that overlap at the anchors

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

3

CONCLUSIONS

MULTIBODY

MORE CONSTRAINTS

- Restricted spatial positions for some anchors
- Convenient modelling of accurate mobility (eg. loops, flexibility, ligand interactions, typical subunits arrangements)

FILTERING

RESULTS CONCLUS

MULTIBODY

SPATIAL CONSTRAINTS

Each atom can be constrained to a specific region

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

FILTERING

RESULTS CONCL

MULTIBODY

SPATIAL CONSTRAINTS

Each atom can be constrained to a specific region

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

FILTERING

RESULTS CONCL

MULTIBODY

SPATIAL CONSTRAINTS

Each atom can be constrained to a specific region

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

MULTIBODY

SPATIAL CONSTRAINTS

Spatial constraints on different atoms may interact through fragments

MULTIBODY

SPATIAL CONSTRAINTS

Spatial constraints on different atoms may interact through fragments

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

MULTIBODY

Spatial constraints

Spatial constraints on different atoms may interact through fragments

FILTERING

RESULTS CONCLU

MULTIBODY

DISTANCE CONSTRAINTS

Minimal distance between pairs of atoms

CONCLUSION

RESULTS

MULTIBODY

DISTANCE CONSTRAINTS

Minimal distance between pairs of atoms

CONCLUSION

MULTIBODY

DISTANCE CONSTRAINTS

Minimal distance between pairs of atoms

THE JOINED-MULTIBODY (JM) CONSTRAINT

- Given a set of fragments for each body
- Given a set of admissible atom volumes
- Given a minimal inter-atomic distance
- We want to identify the fragments combinations that satisfy all the constraints

THE JOINED-MULTIBODY (JM) CONSTRAINT

THEOREM

The problem of determining consistency of JM constraints (i.e., the existence of a solution) is NP-complete.

PROOF.

Sketch: reduction from Self Avoiding Walk on 3D cubic lattices. Idea: create a set of discrete fragments and force them on a lattice.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

APPROXIMATED POLYNOMIAL TIME ALGORITHM

- Identify those fragments in each body that are of no support
 - 1. Need a fast approximation of reachable volumes
 - 2. Intersect it with JM spatial domains
 - 3. Filter non supported fragments

APPROXIMATED POLYNOMIAL TIME ALGORITHM

- Identify those fragments in each body that are of no support
 - 1. Need a fast approximation of reachable volumes
 - 2. Intersect it with JM spatial domains
 - 3. Filter non supported fragments

BOUNDS CONSISTENCY?

- Compute spatial bounding box for end points of assembled bodies
- Simple bounds consistency degenerates into a large box
- The bounds degenerate immediately

BOUNDS CONSISTENCY?

- Compute spatial bounding box for end points of assembled bodies
- Simple bounds consistency degenerates into a large box
- The bounds degenerate immediately

BOUNDS CONSISTENCY?

- Compute spatial bounding box for end points of assembled bodies
- Simple bounds consistency degenerates into a large box
- The bounds degenerate immediately

BOUNDS CONSISTENCY?

- Compute spatial bounding box for end points of assembled bodies
- Simple bounds consistency degenerates into a large box
- The bounds degenerate immediately

BOUNDS CONSISTENCY?

- Compute spatial bounding box for end points of assembled bodies
- Simple bounds consistency degenerates into a large box
- The bounds degenerate immediately

BOUNDS CONSISTENCY?

- Compute spatial bounding box for end points of assembled bodies
- Simple bounds consistency degenerates into a large box
- The bounds degenerate immediately

P-COMPLETENES

FILTERING RESUL

CONCLUSIONS

FILTERING ALGORITHM

- Clustering both in space and angle
- Each fragment in a body is assembled and clustered
- Number of clusters and errors are controlled
- Balance between simple bounds consistency and complete explosion
- Clusters are intersected with JM spatial domains

P-COMPLETENES

FILTERING RESUL

CONCLUSIONS

FILTERING ALGORITHM

- Clustering both in space and angle
- Each fragment in a body is assembled and clustered
- Number of clusters and errors are controlled
- Balance between simple bounds consistency and complete explosion
- · Clusters are intersected with JM spatial domains

P-COMPLETENES

FILTERING RESU

CONCLUSIONS

FILTERING ALGORITHM

- Clustering both in space and angle
- Each fragment in a body is assembled and clustered
- Number of clusters and errors are controlled
- Balance between simple bounds consistency and complete explosion
- Clusters are intersected with JM spatial domains

P-COMPLETENES

FILTERING RESUL

CONCLUSIONS

FILTERING ALGORITHM

- Clustering both in space and angle
- Each fragment in a body is assembled and clustered
- Number of clusters and errors are controlled
- Balance between simple bounds consistency and complete explosion
- Clusters are intersected with JM spatial domains

P-COMPLETENES

FILTERING RESU

CONCLUSIONS

FILTERING ALGORITHM

- Clustering both in space and angle
- Each fragment in a body is assembled and clustered
- Number of clusters and errors are controlled
- Balance between simple bounds consistency and complete explosion
- Clusters are intersected with JM spatial domains

FILTERING RESULTS

CONCLUSIONS

FILTERING ALGORITHM

APPROXIMATED POLYNOMIAL TIME ALGORITHM

Example of 3D clusters for a JM with a few bodies

P-COMPLETENES

FILTERING RESUL

CONCLUSIONS

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

FILTERING ALGORITHM

APPROXIMATED POLYNOMIAL TIME ALGORITHM

- Each cluster contains similar fragments
- Select a representative for each cluster
- Filter out non representatives (controlled error)
- Keep significantly different arrangements
- It can be seen as approximated direct kinematics

EXPERIMENTS

- We implemented the JM propagator in FIASCO (Fragment-based Interactive Assembly for protein Structure prediction with COnstraints)
- C++ constraint solver
- Host: Linux Intel Core i7 860, 2.5 GHz, 8 GB

・ コット (雪) (小田) (コット 日)

EXPERIMENTS

SEARCH SPACE EXPLORED

- Loop length 4, 60 fragments per amino acid, at most 100 clusters per anchor
- JM filtered solutions vs unconstrained solutions
- Increasing space and angle clusters size, \Rightarrow less solutions

EXPERIMENTS

QUALITY OF FILTERED SOLUTIONS

- Can you guarantee that filtered solutions do not deviate from optimal?
- Length 4: 1.0 Å and 15°; Length 8,12: 2.5 Å and 60°
- Comparing best RMSD from original found

EXPERIMENTS

QUALITY VS EFFICIENCY

- Number of clusters affects quality and computational times
- Clusters features: 1.0 Å and 30 $^\circ$
- After 500 clusters no relevant benefits

EXPERIMENTS

LOOP PREDICTOR COMPARISON

- We compared our tool against other 3 popular predictors
- We used a general fragment database
- Our results are on the same order of magnitude

Loop	Average RMSD			
Length	CCD	SOS	FALCm	JMf
4	0.56	0.20	0.22	0.30
8	1.59	1.19	0.72	1.31
12	3.05	2.25	1.81	1.97

CONCLUSIONS

The paper contains:

- Novel constraint to model rigid bodies with degrees of freedom
- NP-completeness proof
- Approximated propagator (directional)
- Experimental validation

Future work:

- Bidirectional propagator
- Loop fragment databases
- Uniform spatial conformation sampling based on JM

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

• Interactive feedback (FIASCO GUI)

FILTERING

RESULTS CONCLUSIONS

CONCLUSIONS

Thank you!

Please visit www.cs.nmsu.edu/fiasco/

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

EXPERIMENTS

SEARCH SPACE EXPLORED

- Larger loops length (8 and 12), can't do exhaustive search
- Lower bound to the filtering ratio

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □