## A Characterisation of the Complexity of Forbidding Subproblems in Binary Max-CSP

Martin C. Cooper Guillaume Escamocher Stanislav Živný

Institut de Recherche en Informatique de Toulouse

University of Oxford

2012, October 10th

A Characterisation of the Complexity of Forbidding Subproblems in Binary Max-CSP

- ロ > - ( 同 > - ( 回 > - ) )

Motivation Definitions Basic Results

### Motivation behind forbidden subproblems

### General problem: Tractable Classes in Max-CSP

#### Classical approaches

- Restrictions on the constraints.
- Restrictions on the graph.

Recent method: **Forbidden Subproblems** Allows the combination of constraint-based and graph-based approaches.

4 3 5 4 3 5

Introduction

Forbidding A Single Subproblem Forbidding Sets of Subproblems Conclusion Motivation Definitions Basic Results

## Subproblem $\equiv$ Instance

- A set of variables.
- A set of points (variable/value assignments).
- A cost on the edges (pairs of points).

#### Introduction

Forbidding A Single Subproblem Forbidding Sets of Subproblems Conclusion Motivation Definitions Basic Result

## Example

- A set of variables:  $\{v, v'\}$ .
- A set of points:  $\{a \in A_{\nu}\} \cup \{b, c \in A_{\nu'}\}.$
- A cost on the edges: Cost(*ab*)=0, Cost(*ac*)=1.



4 E b

Motivation Definitions Basic Results

## Forbidding a subproblem

 $\mathcal{F}(P)$ : Set of Max-CSP instances in which the subproblem P does not occur.



A Characterisation of the Complexity of Forbidding Subproblems in Binary Max-CSP

Motivation Definitions Basic Results

### Suppose that P occurs in P':

 $\begin{array}{l} P \text{ does not occur in } I \Rightarrow P' \text{ does not occur in } I \\ \mathcal{F}(P) \subset \mathcal{F}(P') \\ \mathcal{F}(P) \text{ is tractable} \leftarrow \mathcal{F}(P') \text{ is tractable} \\ \mathcal{F}(P) \text{ is intractable} \Rightarrow \mathcal{F}(P') \text{ is intractable} \end{array}$ 

A Characterisation of the Complexity of Forbidding Subproblems in Binary Max-CSP

Motivation Definitions Basic Results

#### Lemma

Let *P* be a subproblem with three or more values in the domain of some variable. Then  $\mathcal{F}(P)$  is intractable.

### Proof

Reduction from Max-Cut:

- Max-Cut is intractable.
- Any Max-Cut instance can be reduced to a Max-CSP instance on boolean domains.
- $\mathcal{F}(P)$  includes all Max-CSP instances on boolean domains.
- $\mathcal{F}(P)$  includes all Max-Cut instances (after reduction).
- $\mathcal{F}(P)$  is intractable.

Two Variables Three Variables Four+ Variables Dichotomy

### Two-variable subproblems



A Characterisation of the Complexity of Forbidding Subproblems in Binary Max-CSP 8/19

Two Variables Three Variables Four+ Variables Dichotomy

#### Lemma

- $\mathcal{F}(Q_1)$  is tractable.
- **2**  $\mathcal{F}(Q_0), \mathcal{F}(Q_2)$  and  $\mathcal{F}(U)$  are intractable.

### Proof



Reduction from Max-Cut.

A Characterisation of the Complexity of Forbidding Subproblems in Binary Max-CSP

Two Variables Three Variables Four+ Variables Dichotomy

### Three-variable subproblems not containing any of $Q_0$ , $Q_2$ or U:



A Characterisation of the Complexity of Forbidding Subproblems in Binary Max-CSP

Two Variables Three Variables Four+ Variables Dichotomy

#### Lemma

- $\mathcal{F}(B)$  is tractable.
- **2**  $\mathcal{F}(A)$ ,  $\mathcal{F}(C)$  and  $\mathcal{F}(D)$  are intractable.
- **③**  $\mathcal{F}(F)$  is intractable.

### Proof

- Cooper and Živný 2011.
- Cooper and Živný 2011.
- Reduction from Max-Cut.

・ロット (雪) (日) (日)

Two Variables Three Variables Four+ Variables Dichotomy

The only subproblem on four or more variables, and not containing any NP-hard subproblem on three or less variables



is NP-hard by a reduction from Max-Cut.

A Characterisation of the Complexity of Forbidding Subproblems in Binary Max-CSP

Image: A matrix

- A - E - M

**B** >

Introduction Forbidding A Single Subproblem Conclusion

Dichotomy

#### Theorem

If P is a binary Max-CSP subproblem, then  $\mathcal{F}(P)$  is tractable if and only if *P* occurs either in  $Q_1$  or in *B*.



# Definitions

- A boolean subproblem: a subproblem with domains of size at most 2.
- A negative (positive) edge pair: Two edges of cost 1 (of cost 0) in a same constraint.

Definitions



Negative edge pair



• A negative (positive) cycle: A set of k variables  $v_1, \ldots, v_k$  such that there is an edge of cost 1 (of cost 0) in the constraint between  $v_i$  and  $v_{i+1}$  for  $1 \le i \le k - 1$  as well as in the constraint between  $v_k$  and  $v_1$ .



Positive cycle



 A negative (positive) pivot: Three points p, q, r such that Cost(pq)=Cost(pr)=1 (=0).



Negative pivot

### Proposition

If  $\Sigma$  is a finite set of subproblems, then  $\mathcal{F}(\Sigma)$  is tractable only if:

- There is a boolean subproblem P ∈ Σ such that P contains no negative edge pair, no negative cycle and at most one negative pivot.
- Othere is a boolean subproblem Q ∈ ∑ such that Q contains no positive edge pair, no positive cycle and at most one positive pivot.
- Solution There is a boolean subproblem *R* ∈ Σ such that *R* contains neither *Q*<sub>0</sub> nor *Q*<sub>2</sub>.



A Characterisation of the Complexity of Forbidding Subproblems in Binary Max-CSP

## Summary of Results

- Dichotomy when forbidding a single subproblem.
- Necessary conditions when forbidding sets of subproblems.

A Characterisation of the Complexity of Forbidding Subproblems in Binary Max-CSP

## Thank you very much for your attention!

Please ask questions if you have any.

A Characterisation of the Complexity of Forbidding Subproblems in Binary Max-CSP