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The Rising Cost of Electricity (Source: Eurostat)
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Scheduling with Variable Energy-Price

Energy-aware scheduling can save money (but need good
energy-price forecasts)
Recent work focuses on schedules that reduce both
power-usage and cost
Missing big picture: analyse real electricity market, design
reliable energy-price-forecasts and use them for
energy-aware scheduling (this work)
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Case-Study: Irish Electricity Market

Auction-based, spot prices computed every half-hour by
Market Operator (SEMO)
System Marginal Price (SMP) = last accepted supply bid
(Shadow Price) + additional costs (Uplift Price)
Min 20% renewable energy target by 2020 (mostly
wind-generated)
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Irish Electricity Market: Price vs Demand
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Statistics of the Irish SMP for 2009 to mid-2011

Year Min Median Mean Stdev Max
2009 4.12 38.47 43.53 24.48 580.53
2010 -88.12 46.40 53.85 35.49 766.35
2011 0 54.45 63.18 35.79 649.48
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Market Operator (SEMO) Price Forecast

SEMO publishes a 24h-ahead price forecast
It is not known how this forecast is computed
Can we do better?
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SEMO Forecast: Price Linked to Load
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SEMO Actual: Surprises Happen
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Data/Features

From SEMO and Eirgrid: historical/forecasted price, load,
wind generation, expected supply (planned outages,
generator bids). Other: weather forecasts, calendar data
Real data is messy: missing data, units and granularity of
data from SEMO and Eirgrid different (SEMO data for
every 30mins, in MWh; Eirgrid data for every 15 mins, in
MW)
Use year 2010 for training, first half of 2011 for validation
and testing
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Day-Ahead Forecasting Models

FM1 Predict the SMP using historical and forecasted
SMP, shadow price, load and supply.

FM2 Predict the SMP using the local average-SMP and
a learned difference-from-average model. Average
price in each time period is quite stable, predict
difference from average price.

Learning algorithm: Support Vector Machines with RBF
kernel (software: LIBSVM; learning time: 30 mins on PC)
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Day-Ahead Forecasting Models
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Evaluation (Errors and paired t-tests)

Model MAE MSE
SEMO 12.64 1086.25
FM1 11.14 821.01
FM2 11.21 781.72
Baseline Price SEMO FM1 FM2
Actual L 761.8 513.5 486.9

U 1410.7 1128.4 1076.4
SEMO L - 172.4 209.7

U - 358.0 399.3

(FM1, FM2) price-forecasts are stat-significantly better
than SEMO (24-28% better MSE)
For many applications this is enough
Does this mean we produce better schedules?
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Use Case: Feed Mill Scheduling (Simonis 2006)

Animal feed production in UK
Day-by-Day schedule (only need prices 24/36h ahead)
Energy use depends on recipe
Optimize schedule-energy-cost with forecast, evaluate with
actual price
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Evaluation: Schedule-Cost Stats for 880 Runs

Price Min Median Mean Max
Actual 4,383,718 5,934,654 6,093,365 9,805,821
SEMO 4,507,136 6,054,220 6,272,768 10,218,804
FM1 4,499,811 6,058,093 6,266,800 10,070,541
FM2 4,570,552 6,094,818 6,283,261 10,059,264

The Good News
We can produce high-quality energy-aware-schedules
(5-10% off optimal solution that has perfect knowledge of
future price)
This is lower than the mark-up that suppliers require for
fixed/ToU prices (encouraging for using market prices)
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But: t-test Schedule-Cost Comparison between
Forecasts

Price SEMO FM1 FM2
Actual L −200, 564.9 −193, 646.7 −211, 094.4

U −158, 241.3 −153, 222.5 −168, 697.4
SEMO L - −1, 506.1 −17, 262.6

U - 13, 443.1 −3, 722.9

Statistically significantly better forecast (wrt MSE) does not
lead to better schedule-cost
More important to predict when price peaks/valleys occur,
rather than exact price
We tested this in the paper
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Peak-Price Classifiers for Scheduling

Set peak-price threshold at e60 (the 66th price percentile
on validation data)
All price forecasts (SEMO, FM1, FM2) have 78% accuracy
for peak-classification (thus similar scheduling-cost)
Obtain gradually better peak classifiers by correcting error,
and check effect on scheduling-cost
Better peak classification leads to better schedules. Type
of error matters: missing price-peaks, more important than
missing price-valleys
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Conclusion

Electricity price is rising. Energy-aware scheduling can
save us money, better for environment
Proposed day-ahead price-forecasts for irish electricity
market (24% better MSE than Market Operator)
Better forecast wrt MSE does not mean better
schedule-cost
Peak-price classification more important
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Thank You/Questions?

Data Online:
4c.ucc.ie/~gifrim/Irish-electricity-market/
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