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Minimal networks 

• Complete networks in which each tuple in any 

constraint can be extended to a solution 

 

 

 

– A minimal network is satisfiable 

• Computing a solution of a minimal network is NP-

hard [Gottlob CP11] 

– If the above problem is in P, then SAT is also in P 

• How is the case in QSTR? 

x {(1,2), (1,3)} y,   y {(2,1), (3,2)} z,   x {(1,1)} z 
 

Solution:  x = 1, y = 2, z = 1 

Not minimal:  x = 1, y = 3 can not be extended 



Outline 

• Qualitative spatial and temporal reasoning 

– Qualitative calculi 

• Interval Algebra, Cardinal Relation Algebra, RCC-5/8 

– CSP in QSTR 

• Main result: 

Computing a solution of minimal networks in above 
qualitative calculi is NP-hard. 

• Proof sketch 

 



What’s QSTR ? 

• Qualitative Spatial and Temporal Reasoning : 

Represent and reason with spatial (or temporal) 
knowledge in a qualitative manner 
 

– Québec City is to the northeast of Montreal 

– Montreal is to the northeast of Toronto 

 

• Vs. quantitative approach 

– High level 

– Closer to human cognition 



Qualitative calculus 

• Language in QSTR 

• Dealing with a certain aspect (e.g., topology, direction, size) 

of space or time  

• Characterized by its universe and basic relations 
 

 Universe : U 

Set of spatial (or temporal) entities 

 Basic relations :  

  B  = {b1, b2,…, bn} 
A partition of Uk (in this work k=2) 

  Point Algebra 
 

U : Real numbers 
B : {<, =, >} 



Cardinal Relation Algebra 

• Universe : Real plane 

• Basic relations:  

NW, N, NE, W, EQ, E, SW, S, SE 
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Interval Algebra 

• Universe : all closed intervals  [x-, x+] 

• 13 basic relations 

 

a b 

c 



RCC-8 and RCC-5 

DC 
(disconnected) 

TPP 
(tangential proper 

part ) 

EC 
(externally 
connected) 

NTPP 
(non-tangential 

proper part) 

EQ 
(equal) 

TPPi 
(tangential proper 

part inverse) 

PO 
(partially 

overlapping) 

NTPPi 
(non-tangential 

proper part inverse) 

DR PP 

PPi 

Universe: plane regions  



CSP in QSTR 

• Qualitative calculus: a constraint language 
– The domain of each variable is the universe 

– The relation in each constraint is a set of basic relations 

• Examples: 

– x {DC, EC} y, y NTPP z, x PO z 

• Satisfiable, minimal 

– v1<v2, v2{<,=}v3, v1{<,>}v3 

• Satisfiable,  not minimal 

• v1 > v3 can not be satisfied 

Complexity of solving minimal networks 
(in different qualitative calculi) in QSTR? 



Minimal networks in QSTR 

• For CRA, IA, RCC-5/8, the answer is NP-hard 

• Though Gottlob’s approach for proving the 
NP-hardness is followed, our result is not 
implied directly: 

Domains of variables 

free  VS. assumed (infinite) 

Constraints 

free  VS. restricted (basic relations as tuples) 



Proof technique (Gottlob 11) 

Solving a minimal network is NP-hard: 
If there is a polynomial algorithm A that computes a solution of 
a minimal network, then some NP-hard problem P can be solved 
in polynomial time by an algorithm based on A … 
 

Provided that there exists a polynomial mapping R from P to CSP, 
such that for instance φ in problem P, 

  (*)  φ is positive iff R(φ) is a minimal network; and 

(**)  φ is negative iff R(φ) is an unsatisfiable network. 

 

R is a reduction, therefore, deciding the minimality of CSP is NP-

hard. 

 



Proof technique (Gottlob 11) 

(1) A computes a solution of a minimal network in p(.) time 

(2) φ is positive (negative) iff R(φ) is minimal (unsatisfiable) 

The following polynomial algorithm solves NP-hard problem P 

START 

read problem P  
instance  φ 

Γ ← R(φ) 

Is r a 

solution 
of Γ ? 

φ is a positive 
instance 

φ  is a negative 
instance 

Yes No 

r ← run A with input Γ 
for  p(|Γ|) steps END 



To prove the NP-hardness… 

• Find an NP-hard problem P, and  

• A reduction R from P to the target CSP, s.t. 

– Positive instances mapped to minimal networks 

– Negative instances mapped to unsatisfiable 
networks. 

 

Symmetry of 
instances of P 

Minimality of target 
CSP networks 

R 



Symmetric SAT 

A SAT instance φ is symmetric if either φ is unsatisfiable, or for 

any an assignment π, π satisfies φ implies that assignment π is 

also satisfying, where π assigns each propositional variable p the 

opposite truth value to π(p). 
 

Lemma 

A SAT instance φ can be transformed in polynomial time into a 

symmetric SAT instance φ*, preserving satisfiability. 

φ = (p1p2)    (p2p3) 

 

φ*= (p1p2q) (p2p3q)  (p1p2q) (p2p3q)  

 

_ 

_ 

Symmetric SAT is NP-hard 



Proof sketch, Cardinal Relation Algebra 

Propositional variable pi             spatial variables xi and yi 

 

 

 

 

 

 

                             Literal l            spatial variables c and d 

l is assigned true (false )   :    c is to the left (right) of d  

xi, yi xi  {NW, SE} yj 

pi  is assigned true pi  is assigned false 

c <x (>x)d 



Proof sketch, Cardinal Relation Algebra 

• For clause c contains literals l1, …, lt 

 We have spatial variables c1, d1 , …, ct , dt  

• We impose constraints such that ck+1, dk are on the 
same vertical line (ct+1 considered as c1)  

• All literals are assigned false : 

  c1 >x d1 =x c2 >x d2 =x … =x ct >x dt =x c1 

• Symmetry of the SAT instances also forbids the case that all 
literals are assigned true. 

• The constructed CRA network is minimal if SAT 
instance is satisfiable. 

ck+1 =x dk 



Interval Algebra 

• An interval [x, y] corresponds to a point (x, y) 

• Translate previous reduction 

NW N NE W EQ E SW S SE 

di si oi fi eq f o s d 



RCC-5/8 

k-supersymmetric SAT [Gottlob 11] : 

A SAT instance φ is k-supersymmetric if either φ is 

unsatisfiable, or arbitrary partial truth value assignment over k 

variables can be extended to a satisfying assignment of φ. 

 

Lemma 

A SAT instance φ can be transformed in polynomial time into a 

symmetric and k-supersymmetric SAT instance φ*, preserving 

satisfiability. 

 

A more delicate reduction is needed… refer to the paper for 

details. 

 



Conclusion 

• Solving a minimal network in qualitative 
calculi IA, CRA, RCC-5/8 is NP-hard. 

• Bi-product: deciding minimality in these 
qualitative calculi is NP-hard. 

 

• Thank you for your attention ! 

• Questions? 

 


