

Constraint Programming with Decision Diagrams

Willem-Jan van Hoeve

Tepper School of Business Carnegie Mellon University

Acknowledgments:

David Bergman, Andre A. Cire, Sam Hoda, and John N. Hooker NSF, Google

Summary

What can MDDs do for discrete optimization?

- *Compact representation* of all solutions to a problem
- Limit on size gives *approximation*
- Control strength of approximation by size limit

MDDs for Constraint Programming

- MDD propagation natural generalization of domain propagation
- Orders of magnitude improvement possible

MDDs for optimization (CP/ILP/MINLP)

- MDDs provide *discrete relaxations*
- Much stronger bounds can be obtained in much less time

Many opportunities: search, stochastic programming, integrated methods, theory, ...

Decision Diagrams

- Binary Decision Diagrams were introduced to compactly represent Boolean functions [Lee, 1959], [Akers, 1978], [Bryant, 1986]
- BDD: merge isomorphic subtrees of a given binary decision tree
- MDDs are multi-valued decision diagrams (i.e., for discrete variables)

Brief background

- Original application areas: circuit design, verification
- Usually *reduced ordered* BDDs/MDDs are applied
 - fixed variable ordering
 - minimal exact representation
- Recent interest from optimization community
 - cut generation [Becker et al., 2005]
 - 0/1 vertex and facet enumeration [Behle & Eisenbrand, 2007]
 - post-optimality analysis [Hadzic & Hooker, 2006, 2007]
 - set bounds propagation [Hawkins, Lagoon, Stuckey, 2005]
- Interesting variant
 - approximate MDDs

[H.R. Andersen, T. Hadzic, J.N. Hooker, & P. Tiedemann, CP 2007]

Carnegie Mellon

Carnegie Mellon

Carnegie Mellon

Carnegie Mellon

Carnegie Mellor

- Exact MDDs can be of exponential size in general
- Can we limit the size of the MDD and still have a meaningful representation?
 - Yes, first proposed by Andersen et al. [2007] :
 Limit the *width* of the MDD (the maximum number of nodes on any layer)
- Approximate MDDs: main focus of this talk

Related Work: Exact MDDs for constraint propagation

- 1. Set bounds propagation [Hawkins, Lagoon, Stuckey, 2005], [Gange, Lagoon, Stuckey, 2008]
- 2. Ad-hoc Table constraints [Cheng and Yap, 2008]
- 3. Regular constraint [Cheng, Xia, Yap, 2012]
- 4. Market Split Problem [Hadzic et al., 2009]

MDD-Based Constraint Programming

- 5. Andersen, Hadzic, Hooker, Tiedemann: A Constraint Store Based on Multivalued Decision Diagrams. CP 2007: 118-132
- 6. Hadzic, Hooker, O'Sullivan, Tiedemann: Approximate Compilation of Constraints into Multivalued Decision Diagrams. CP 2008: 448-462
- 7. Hoda, v.H., Hooker: A Systematic Approach to MDD-Based Constraint Programming. CP 2010: 266-280

References (cont'd)

Specific MDD Propagation Algorithms

- 8. Hadzic, Hooker, Tiedemann: Propagating Separable Equalities in an MDD Store. CPAIOR 2008: 318-322
- 9. Ciré, v.H.: MDD Propagation for Disjunctive Scheduling. ICAPS 2012
- 10. Ciré, v.H.: MDD Propagation for Sequence Constraints. Tepper School of Business Working Paper 2011-E12, Carnegie Mellon University, 2011

MDD-Based Optimization

- 11. Bergman, v.H., Hooker: Manipulating MDD Relaxations for Combinatorial Optimization. CPAIOR 2011: 20-35
- 12. Bergman, Ciré, v.H., Hooker: Variable Ordering for the Application of BDDs to the Maximum Independent Set Problem. CPAIOR 2012: 34-49
- Bergman, Ciré, v.H., Hooker: Optimization Bounds from Binary Decision Diagrams. Tepper School of Business Working Paper 2012-E15, Carnegie Mellon University, 2012

MDDs for Constraint Programming

Motivation

Constraint Programming applies

- systematic search and
- inference techniques

to solve combinatorial problems

Inference mainly takes place through:

- Filtering provably inconsistent values from variable domains
- Propagating the updated domains to other constraints

$$\begin{array}{c} x_{1} \in \{1,2\}, \, x_{2} \in \{1,2,3\}, \, x_{3} \in \{2,3\} \\ x_{1} < x_{2} & x_{2} \in \{2,3\} \\ all different(x_{1},x_{2},x_{3}) & x_{1} \in \{1\} \end{array}$$

Illustrative Example

AllEqual(
$$x_1, x_2, ..., x_n$$
), all x_i binary
 $x_1 + x_2 + ... + x_n \ge n/2$

Drawback of domain propagation

- All structural relationships among variables are projected onto the domains
- Potential solution space implicitly defined by Cartesian product of variable domains (very coarse relaxation)
- We can communicate more information between constraint using MDDs [Andersen et al. 2007]
- Explicit representation of more refined potential solution space
- Limited width defines *relaxation* MDD
- Strength is controlled by the imposed width

MDD-based Constraint Programming

- Maintain limited-width MDD
 - Serves as relaxation
 - Typically start with width 1 (initial variable domains)
 - Dynamically adjust MDD, based on constraints
- Constraint Propagation
 - Edge filtering: Remove provably inconsistent edges (those that do not participate in any solution)
 - Node refinement: Split nodes to separate edge information
- Search
 - As in classical CP, but may now be guided by MDD

Domain consistency generalizes naturally to MDDs:

- Let C(X) be a constraint on variables X and let M be an MDD on X
- Constraint C is MDD consistent if for each arc in M, there is at least one path in M that represents a solution to C

Equivalent to domain consistency for MDD of width 1

Specific MDD propagation algorithms

- Linear equalities and inequalities
- *Alldifferent* constraints
- *Element* constraints
- Among constraints
- Disjunctive scheduling constraints [Hoda et al., 2010]
- Sequence constraints (combination of Amongs) [V.H., 2011]
- Generic re-application of existing domain filtering algorithm for any constraint type [Hoda et al., 2010]

- [Hadzic et al., 2008] [Hoda et al., 2010]
- [Andersen et al., 2007]
- [Hoda et al., 2010]
- [Hoda et al., 2010]

[Cire & v.H., 2011]

Constraint Representation in MDDs

- For a given constraint type we maintain specific 'state information' at each node in the MDD
- Computed from incoming arcs (both from top and from bottom)
- State information is basis for MDD *filtering* and for MDD *refinement*

First example: Among constraints

 Given a set of variables X, and a set of values S, a lower bound l and upper bound u,

Among(X, S, l, u) :=
$$l \leq \sum_{x \in X} (x \in S) \leq u$$

"among the variables in X, at least *l* and at most *u* take a value from the set *S*"

- Applications in, e.g., sequencing and scheduling
- WLOG assume here that X are binary and S = {1}

Example MDD for Among

Exact MDD for *Among*({x₁,x₂,x₃,x₄},{1},2,2)

Goal: Given an MDD and an Among constraint, remove all inconsistent edges from the MDD (establish MDD-consistency)

Approach:

- Compute path lengths from the root and from the sink to each node in the MDD
- Remove edges that are not on a path with length between lower and upper bound
- Complete (MDD-consistent) version •
 - Maintain all path lengths; quadratic time
- Partial version (does not remove all inconsistent edges)
 - Maintain and check bounds (longest and shortest paths); linear time

[Hoda et al., CP 2010]

Node refinement for Among

For each layer in MDD, we first apply edge filter, and then try to refine

- consider incoming edges for each node
- split the node if there exist incoming edges that are not equivalent (w.r.t. path length)
- in other words, need to identify *equivalence classes*

Example:

We will propagate Among({x₁,x₂,x₃,x₄},{1},2,2) through a BDD of maximum width 3

Experiments

- Multiple among constraints
 - 50 binary variables total
 - 5 variables per among constraint, indices chosen from normal distribution with uniform-random mean in [1..50] and stdev 2.5, modulo 50 (i.e., somewhat consecutive)
 - Classes: 5 to 200 among constraints (step 5), 100 instances per class
- Nurse rostering instances (horizon *n* days)
 - Work 4-5 days per week
 - Max A days every B days
 - Min C days every D days
 - Three problem classes
- Compare width 1 (traditional domains) with increasing widths

Multiple Amongs: Backtracks

width 1 vs 4

width 1 vs 16

Multiple Amongs: Running Time

width 1 vs 4

width 1 vs 16

		Wid	th 1	Widt	h 4	Width 32		
	Size	BT	CPU	BT	CPU	BT	CPU	
Class 1	40	61,225	55.63	8,138	12.64	3	0.09	
	80	175,175	442.29	5,025	44.63	11	0.72	
Class 2	40	179,743	173.45	17,923	32.59	4	0.07	
	80	179,743	459.01	8,747	80.62	2	0.32	
Class 3	40	91,141	84.43	5,148	9.11	7	0.18	
	80	882,640	2,391.01	33,379	235.17	55	3.27	

Employee must work at most 7 days every 9 consecutive days

sun	mon	tue	wed	thu	fri	sat	sun	mon	tue	wed	thu
x ₁	x ₂	X ₃	x ₄	x ₅	x ₆	Х ₇	x ₈	x ₉	x ₁₀	x ₁₁	x ₁₂

$$0 \le x_{1} + x_{2} + \dots + x_{9} \le 7$$

$$0 \le x_{2} + x_{3} + \dots + x_{10} \le 7$$

$$0 \le x_{3} + x_{4} + \dots + x_{11} \le 7$$

$$0 \le x_{4} + x_{5} + \dots + x_{12} \le 7$$

$$=: Sequence([x_{1}, x_{2}, \dots, x_{12}], q=9, S=\{1\}, l=0, u=7)$$

Sequence(X, q, S, l, u) :=
$$\bigwedge_{\substack{|X'|=q}} l \leq \sum_{x \in X'} (x \in S) \leq u$$
$$\downarrow$$
$$Among(X, S, l, u)$$

MDD Representation for Sequence

 Equivalent to the DFA representation of Sequence for domain propagation

[v.H. et al., 2006, 2009]

• Size O(*n*2^{*q*})

Exact MDD for *Sequence*(*X*, *q*=3, *S*={1}, *l*=1, *u*=2)

34

Carnegie Mello

Goal: Given an arbitrary MDD and a *Sequence* constraint, remove *all* inconsistent edges from the MDD (i.e., MDD-consistency)

Can this be done in polynomial time?

Theorem: Establishing MDD consistency for *Sequence* on an arbitrary MDD is NP-hard (even if the MDD order follows the sequence of variables *X*) Proof: Reduction from 3-SAT

Next goal: Develop a *partial* filtering algorithm, that does not necessarily achieve MDD consistency

Partial filter from decomposition

- Sequence(X, q, S, l, u) with $X = x_1, x_2, ..., x_n$
- Introduce a 'cumulative' variable y_i representing the sum of the first *i* variables in X

$$y_0 = 0$$

 $y_i = y_{i-1} + (x_i \in S)$ for $i=1..n$

• Then the among constraint on $[x_{i+1}, ..., x_{i+q}]$ is equivalent to

$$l \le y_{i+q} - y_i$$

$$y_{i+q} - y_i \le u \qquad \text{for } i = 0..n-q$$

• [Brand et al., 2007] show that bounds reasoning on this decomposition suffices to reach Domain consistency for *Sequence* (in poly-time)

Carnegie Mellon ECHOOL OF BUSINESS

Sequence(*X*, *q*=3, *S*={1}, *l*=1, *u*=2)

Approach

- :0

:1

- The auxiliary variables y_i can be naturally represented at the nodes of the MDD – this will be our state information
- We can now actively *filter* this node information (not only the edges)

Sequence(*X*, *q*=3, *S*={1}, *l*=1, *u*=2)

- :1

 $y_i = y_{i-1} + x_i$ $1 \le y_3 - y_0 \le 2$ $1 \le y_4 - y_1 \le 2$ $1 \le y_5 - y_2 \le 2$

38

Carnegie Mellor

Sequence(*X*, *q*=3, *S*={1}, *l*=1, *u*=2)

 $y_{i} = y_{i-1} + x_{i}$ $1 \le y_{3} - y_{0} \le 2$ $1 \le y_{4} - y_{1} \le 2$ $1 \le y_{5} - y_{2} \le 2$

39

Carnegie Mellor

Sequence(*X*, *q*=3, *S*={1}, *l*=1, *u*=2)

- :1

 $y_i = y_{i-1} + x_i$ $1 \le y_3 - y_0 \le 2$ $1 \le y_4 - y_1 \le 2$ $1 \le y_5 - y_2 \le 2$

Carnegie Mellon

Sequence(X, q=3, S={1}, l=1, u=2) $y_i = y_{i-1} + x_i$ $1 \le y_3 - y_0 \le 2$ $1 \le y_4 - y_1 \le 2$

$$1 \le y_5 - y_2 \le 2$$

41

Carnegie Mellon

Sequence(*X*, *q*=3, *S*={1}, *l*=1, *u*=2)

 $y_{i} = y_{i-1} + x_{i}$ $1 \le y_{3} - y_{0} \le 2$ $1 \le y_{4} - y_{1} \le 2$ $1 \le y_{5} - y_{2} \le 2$

This procedure does not guarantee MDD consistency

Carnegie Mellor

Analysis of Algorithm

- Initial population of node domains (y variables)
 - linear in MDD size
- Analysis of each state in layer k
 - maintain list of ancestors from layer k-q
 - direct implementation gives $O(qW^2)$ operations per state (W is maximum width)
 - need only maintain min and max value over previous q layers: O(Wq)
- One top-down and one bottom-up pass

Experimental Setup

- Decomposition-based MDD filtering algorithm
 - Implemented as global constraint in IBM ILOG CPLEX CP Optimizer 12.3
- Evaluation
 - Compare MDD filtering with Domain filtering
 - Domain filter based on the same decomposition (achieves domain consistency for all our instances)
 - Random instances and structured shift scheduling instances
- All methods apply the same fixed search strategy
 - lexicographic variable and value ordering
 - find first solution or prove that none exists

Random instances

- Randomly generated instances
 - n=20-48 variables
 - domain size between 10 and 30
 - 1, 2, 5, 7, or 10 Sequence constraints
 - *q* random from [2..*n*/2]
 - u l random from 0 to q-1
 - 360 instances
- Vary maximum width of MDD
 - widths 1 up to 32

Random instances results

Random instances results (cont'd)

Shift scheduling instances

- Shift scheduling problem for n=40, 50, 60, 70, 80 days
- Shifts: day (D), evening (E), night (N), off (O)
- Problem type P-I
 - work at least 22 day or evening shifts every 30 days

Sequence(*X*, *q*=30, *S*= {D, E}, *l*=22, *u*=30)

- have between 1 and 4 days off every 7 consecutive days

Sequence(*X*, *q*=7, *S*={O}, *l*=1, *u*=4)

- Problem type P-II
 - Sequence(X, q=30, S={D, E}, l=23, u=30)
 - Sequence($X, q=5, S=\{N\}, l=1, u=2$)

MDD Filter versus Domain Filter

Instance		Domain filtering		MDD - width 1		MDD - width 2		MDD - width 8	
	n	backtracks	time	backtracks	time	backtracks	time	backtracks	time
Type P-I	40	17,054	0.36	17,054	0.61	1,213	0.07	0	0.00
	50	17,054	0.42	17,054	0.75	1,213	0.09	0	0.00
	60	17,054	0.54	17,054	0.90	1,213	0.11	0	0.01
	70	17,054	0.58	17,054	1.04	1,213	0.12	0	0.01
	80	17,054	0.66	17,054	1.26	1,213	0.15	0	0.01
Type P-II	40	126,406	2.00	126,406	4.66	852	0.08	0	0.00
	50	126,406	2.36	126,406	5.90	852	0.09	0	0.00
	60	126,406	2.86	126,406	7.43	852	0.11	0	0.00
	70	126,406	3.04	126,406	8.38	852	0.13	0	0.01
	80	126,406	3.48	126,406	9.46	852	0.15	0	0.01

MDDs for Disjunctive Scheduling

Constraint-Based Scheduling

- Disjunctive scheduling may be viewed as the 'killer application' for CP
 - Natural modeling (activities and resources)
 - Allows many side constraints (precedence relations, time windows, setup times, etc.)
 - State of the art while being generic methodology
- However, CP has some problems when
 - objective is not minimize makespan (but instead, e.g., weighted sum)
 - setup times are present

Heinz & Beck [CPAIOR 2012] compare CP and MIP

• What can MDDs bring here?

Disjunctive Scheduling

- Sequencing and scheduling of activities on a resource
- Activities
 Processing time: p_i
 Release time: r_i
 Deadline: d_i
 Activity 2
 Activity 3
- Resource
 - Nonpreemptive
 - Process one activity at a time

Common Side Constraints

- Precedence relations between activities
- Sequence-dependent setup times
- Induced by objective function
 - Makespan
 - Sum of setup times
 - Sum of completion times
 - Tardiness / number of late jobs

— ...

Inference

- Inference for disjunctive scheduling
 - Precedence relations
 - Time intervals that an activity can be processed
- Sophisticated techniques include:

 $s_3 \ge 3$

- Edge-Finding
- Not-first / not-last rules

Our three main considerations:

- Representation
 - How to represent solutions of disjunctive scheduling in an MDD?
- Construction
 - How to construct this relaxed MDD?
- Inference techniques
 - What can we infer using the relaxed MDD?

Cire & v.H. [2012]

MDD Representation

- Natural representation as 'permutation MDD'
- Every solution can be written as a permutation π

 $\pi_1, \pi_2, \pi_3, ..., \pi_n$: activity sequencing in the resource

• Schedule is *implied* by a sequence, e.g.:

$$start_{\pi_i} \ge start_{\pi_{i-1}} + p_{\pi_{i-1}} \qquad i = 2, \dots, n$$

MDD Representation

Act	r _i	d _i	p _i
1	0	3	2
2	4	9	2
3	3	8	3

Path $\{1\} - \{3\} - \{2\}$: $0 \le \text{start}_1 \le 1$ $6 \le \text{start}_2 \le 7$ $3 \le \text{start}_3 \le 5$

Theorem: *Constructing the exact MDD for a Disjunctive Instance is an NP-Hard problem*

Nevertheless, there are interesting restrictions, e.g. (Balas [99]):

- TSP defined on a complete graph
- Given a fixed parameter **k**, we must satisfy

 $i \ll j$ if $j - i \ge k$ for cities i, j

Lemma: The exact MDD for the TSP above has $O(n2^k)$ nodes

MDD Propagation

We can apply several propagation algorithms:

- *Alldifferent* for the permutation structure
- Earliest start time / latest end time
- Precedence relations

Propagation (cont'd)

- labels on *all* paths: A_i
- labels on *some* paths: S_i
- earliest starting time: E_i
- latest completion time: L_i
- Top down example for arc (u,v)

Alldifferent Propagation

- All-paths state: A_u
 - Labels belonging to all paths from node r to node u
 - ► A_u = {3}
 - Thus eliminate {3} from (u,v)

Alldifferent Propagation

- Some-paths state: S_u
 - Labels belonging to some path from node r to node u
 - ► S_u = {1,2,3}
 - Identification of Hall sets
 - Thus eliminate {1,2,3} from (u,v)

Propagate Earliest Completion Time

- Earliest Completion Time: E_u
 - Minimum completion time of all paths from root to node u
- Similarly: Latest Completion Time

Propagate Earliest Completion Time

Act	r _i	d _i	p _i	
1	0	3	2	
2	3	7	3	
3	1	8	3	
4	5	6	1	
5	2	10	3	

0 r {1,2} {3} π_1 {3} {1} π_2 {**1**,2} 4 {1} {2} **{3}** π_3 7 {4,5} π_4

► E_u = 7

Eliminate 4 from (u,v)

Theorem: Given the exact MDD M, we can deduce all implied activity precedences in polynomial time in the size of M

- For a node *v*,
 - A_v^{\downarrow} : values in all paths from root to v
 - A_{v}^{\uparrow} : values in all paths from node v to terminal
- Precedence relation $i \ll j$ holds if and only if $(j \notin A_u^{\downarrow})$ or $(i \notin A_u^{\uparrow})$ for all nodes u in M
- Same technique applies to relaxed MDD

Communicate Precedence Relations

- 1. Provide precedence relations from MDD to CP
 - update start/end time variables
 - other inference techniques may utilize them
- Filter the MDD using precedence relations from other (CP) techniques

MDD Refinement

- For refinement, we generally want to identify equivalence classes among nodes in a layer
- Theorem:

Let M represent a Disjunctive Instance. Deciding if two nodes u and v in M are equivalent is NP-hard.

- In practice, refinement can be based on
 - earliest starting time
 - latest earliest completion time r_i+p_i
 - *alldifferent* constraint (A_i and S_i states)

Experiments

- MDD propagation implemented in IBM ILOG CPLEX CP Optimizer 12.4 (CPO)
 - State-of-the-art constraint based scheduling solver
 - Uses a portfolio of inference techniques and LP relaxation
- Main purpose of experiments
 - where can MDDs bring strength to CP
 - compare stand-alone MDD versus CP
 - compare CP versus CP+MDD (most practical)

Problem classes

- Disjunctive instances with
 - sequence-dependent setup times
 - release dates and deadlines
 - precedence relations
- Objectives (that are presented here)
 - minimize makespan
 - minimize sum of setup times
- Benchmarks
 - Random instances with varying setup times
 - TSP-TW instances (Dumas, Ascheuer, Gendreau)
 - Sequential Ordering Problem

Test 1: Importance of setup times

Test 2: Minimize Makespan

- 229 TSPTW instances with up to 100 jobs
- Minimize makespan
- Time limit 7,200s
- Max MDD width is 16

instances solved by CP: 211

instances solved by pure MDD: 216

instances solved by CP+MDD: 225

Minimize Makespan: Fails

Minimize Makespan: Time

73

Carnegie Mellon

SCHOOL OF BUSINES

Min sum of setup times: Fails

Min sum of setup times: Time

10000 Dumas/Ascheuer instances 1000 - 20-60 jobs Pure MDD time (s) - lex search × × - MDD width: 16 100 × × × 10 × × × × ×× X 1 × ×× × × 0.1 × × × ×× × ××× 0.01 0.01 0.1 10 1 100 1000 10000 CPO time (s) 75

		СРО		CPO+MDD	
Instance	Cities	Backtracks	Time (s)	Backtracks	Time (s)
n40w40.004	40	480,970	50.81	18	0.06
n60w20.001	60	908,606	199.26	50	0.22
n60w20.002	60	84,074	14.13	46	0.16
n60w20.003	60	> 22,296,012	> 3600	99	0.32
n60w20.004	60	2,685,255	408.34	97	0.24

minimize sum of setup times

MDDs have maximum width 16

Sequential Ordering Problem

- TSP with precedence constraints (no time windows)
- Instances up to 53 jobs
- Time limit 1,800s
- CPO: default search
- MDD+CPO: search guided by MDD (shortest path)
- Max MDD width 2,048

Sequential Ordering Problem Results

Carnegie Mellon

SCHOOL OF BUSINESS

Summary for MDD-based CP

- MDDs provide substantial advantage over traditional domains for constraint propagation
 - Strength of MDD can be controlled by the width
 - Huge reduction in the amount of backtracking and solution time is possible
 - Particular examples: among, sequence, and disjunctive scheduling constraints

MDDs for Discrete Optimization

Motivation

- Limited width MDDs provide a (discrete) relaxation to the solution space
- Can we exploit MDDs to obtain bounds for discrete optimization problems?

Handling objective functions

Suppose we have an objective function of the form $\min \sum_{i} f_{i}(x_{i})$ for arbitrary functions f_i

In an exact MDD, the optimum can be found by a shortest r-s path computation (edge weights are $f_i(x_i)$)

Approach

- Construct the relaxation MDD using a *top-down* compilation method
- Find shortest path \rightarrow provides bound B
- Extension to an exact method
 - 1. Isolate all paths of length B, and verify if any of these paths is feasible^{*}
 - 2. if not feasible, set B := B + 1 and go to 1
 - 3. otherwise, we found the optimal solution
- * Feasibility can be checked using MDD-based CP

Case Study: Independent Set Problem

- Given graph G = (V, E) with vertex weights w_i
- Find a subset of vertices S with maximum total weight such that no edge exists between any two vertices in S

max
$$\sum_{i} w_{i} x_{i}$$

s.t. $x_i + x_j \le 1$ for all (i,j) in E

x_i binary for all i in V

Exact top-down compilation

X₅

Node Merging

{1,2,3,4,5} {2,3,4,5} {3,4,5} `{**4,5**} {5}

87

Evaluate Objective Function

Experimental Results

- Impact of maximum width on strength of bound (and running time)
- Compare MDD bounds to LP bounds
 - IBM ILOG CPLEX 12.4
 - root node relaxation, no presolve, aggressive clique cuts,
 MIPemphasis
- Time Limit 3,600s
- DIMACS clique instances (unweighted graphs)

Impact of width on relaxation

brock_200-2 instance

MDD versus LP bounds: Quality

94

Carnegie Mello

SCHOOL OF BUSINE

MDD versus LP bounds: Time

95

Restriction MDDs

- Relaxation MDDs find upper bounds for independent set problem
- Can we use MDDs to find lower bounds as well (i.e., good feasible solutions)?
- Restriction MDDs represent a subset of feasible solutions
 - we require that every r-s path corresponds to a feasible solution
 - but not all solutions need to be represented
- Goal: Use restriction MDDs as a heuristic to find good feasible solutions

Using an exact top-down compilation method, we can create a limited-width restriction MDD by

- 1. merging nodes, or
- 2. deleting nodes

while ensuring that no solution is lost

Node merging by example

Restriction MDD (width \leq 3) ----: 0 {1,2,3,4,5} X_1 {2,3,4,5} {3,4} \mathbf{X}_{2} {5} {3,4,5} {3,4} X_3 {4,5} {5} {4}`\ {5} Ø

Node merging by example

Restriction MDD (width \leq 3) ----: 0 {1,2,3,4,5} X_1 {2,3,4,5} {3,4} \mathbf{X}_{2} {5} {3,4,5} {3,4} X_3 {4}` {5} Ø

Node merging heuristics

- Random
 - select two nodes $\{u_1, u_2\}$ uniformly at random
- Objective-driven
 - select two nodes $\{u_1, u_2\}$ such that

 $f(u_1), f(u_2) \le f(v)$ for all nodes $v \ne u_1, u_2$ in the layer

- Similarity
 - select two nodes {u₁, u₂} that are 'closest'
 - problem dependent (or based on semantics)

Node deletion by example

Node deletion heuristics

- Random
 - select node u uniformly at random
- Objective-driven
 - select node u such that

 $f(u) \le f(v)$ for all nodes $v \ne u$ in the layer

- Information-driven
 - problem specific

Experimental Results

- Comparison to greedy heuristic
 - select vertex v with smallest degree and add it to independent set
 - remove v and its neighbors and repeat
- DIMACS instance set
- MDD version 1: maximum width 100
 - time comparable to greedy heuristic (max 0.25s)
- MDD version 2: maximum width 8,000,000/n
 - maximum time 13s

Summary for MDD-Optimization

- Limited-width MDDs can provide useful bounds for discrete optimization
 - The maximum width provides a natural trade-off between computational efficiency and strength
 - Both lower and upper bounds
 - Generic discrete relaxation and restriction method for MIP-style problems
- So far, mainly combinatorial applications
 - Independent Set Problem, Set Covering Problem,
 Set Packing Problem

Open issues

- Extend application to CP
 - Which other global constraints are suitable? (Cumulative?)
 - Can we develop search heuristics based on the MDD?
 - Can we more efficiently store and manipulate approximate MDDs? (Implementation issues)
 - Can we obtain a tighter integration with CP domains?
- MDD technology
 - Variable ordering is crucial for MDDs. What can we do if the ordering is not clear from the problem statement?
 - How should we handle constraints that partially overlap on the variables? Build one large MDD or have partial MDDs communicate?

Open issues (cont'd)

- Formal characterization
 - Can MDDs be used to identify tractable classes of CSPs?
 - Can we identify classes of global constraints for which establishing MDD consistency is hard/easy?
 - Can MDDs be used to prove approximation guarantees?
 - Can we exploit a connection between MDDs and tight LP representations of the solution space?
- Optimization
 - Approximate MDDs can provide bounds for any nonlinear (separable) objective function. Demonstrate the performance on an actual application.

Open issues (cont'd)

- Beyond classical CP
 - How can MDDs be helpful in presence of uncertainty?
 E.g., can we use approximate MDDs to represent policy trees for stochastic optimization? [Cire, Coban, v.H., 2012]
 - Can we utilize approximate MDDs for SAT?
 - Can MDDs help generate nogoods, e.g., in lazy clause generation?
 - Can we exploit a tighter integration of MDDs in MIP solvers?
- Applications
 - So far we have looked mostly at generic problems. Are there specific applications for which MDDs work particularly well? (Bioinformatics?)
Summary

What can MDDs do for discrete optimization?

- *Compact representation* of all solutions to a problem
- Limit on size gives *approximation*
- Control strength of approximation by size limit

MDDs for Constraint Programming

- MDD propagation natural generalization of domain propagation
- Orders of magnitude improvement possible

MDDs for optimization (CP/ILP/MINLP)

- MDDs provide *discrete relaxations*
- Much stronger bounds can be obtained in much less time

Many opportunities: search, stochastic programming, integrated methods, theory, ...