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Summary

What can MDDs do for discrete optimization?

• Compact representation of all solutions to a problem

• Limit on size gives approximation

• Control strength of approximation by size limit

MDDs for Constraint Programming

• MDD propagation natural generalization of domain propagation

• Orders of magnitude improvement possible

MDDs for optimization (CP/ILP/MINLP)

• MDDs provide discrete relaxations

• Much stronger bounds can be obtained in much less time

Many opportunities: search, stochastic programming, integrated 

methods, theory, …
2



Decision Diagrams

• Binary Decision Diagrams were introduced to compactly 

represent Boolean functions [Lee, 1959], [Akers, 1978], [Bryant, 1986]

• BDD: merge isomorphic subtrees of a given binary decision tree

• MDDs are multi-valued decision diagrams (i.e., for discrete 

variables)
3
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Brief background

• Original application areas: circuit design, verification

• Usually reduced ordered BDDs/MDDs are applied

– fixed variable ordering

– minimal exact representation

• Recent interest from optimization community

– cut generation [Becker et al., 2005]

– 0/1 vertex and facet enumeration [Behle & Eisenbrand, 2007]

– post-optimality analysis [Hadzic & Hooker, 2006, 2007]

– set bounds propagation [Hawkins, Lagoon, Stuckey, 2005]

• Interesting variant

– approximate MDDs 

[H.R. Andersen, T. Hadzic, J.N. Hooker, & P. Tiedemann, CP 2007] 4



Exact MDDs for discrete optimization
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Exact MDDs for discrete optimization
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Exact MDDs for discrete optimization
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Exact MDDs for discrete optimization
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Exact MDDs for discrete optimization
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Approximate MDDs

• Exact MDDs can be of exponential size in 

general

• Can we limit the size of the MDD and still have 

a meaningful representation?

– Yes, first proposed by Andersen et al. [2007] :

Limit the width of the MDD (the maximum number 

of nodes on any layer)

• Approximate MDDs: main focus of this talk
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MDDs for Constraint Programming
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Motivation

Constraint Programming applies 

• systematic search and 

• inference techniques 

to solve combinatorial problems

Inference mainly takes place through:

• Filtering provably inconsistent values from variable domains

• Propagating the updated domains to other constraints

x1 < x2 

x1 ∈ {1,2}, x2 ∈ {1,2,3}, x3 ∈ {2,3}

alldifferent(x1,x2,x3)

x2 ∈ {2,3}

x1 ∈ {1}
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Illustrative Example

AllEqual(x1, x2,…, xn),  all xi binary

x2

xn-1

xn

x1
{0,1}

{0,1}

domain representation, size 2n

{0,1}

{0,1}

x1 + x2 + … + xn ≥ n/2

{1}

{0}

{0}

{0}

{0}

{1}

{1}

{1}

MDD representation, size 2
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Drawback of domain propagation

• All structural relationships among variables are 

projected onto the domains

• Potential solution space implicitly defined by Cartesian 

product of variable domains (very coarse relaxation)

We can communicate more information between 

constraint using MDDs [Andersen et al. 2007]

• Explicit representation of more refined potential 

solution space

• Limited width defines relaxation MDD

• Strength is controlled by the imposed width
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MDD-based Constraint Programming

• Maintain limited-width MDD

– Serves as relaxation

– Typically start with width 1 (initial variable domains)

– Dynamically adjust MDD, based on constraints

• Constraint Propagation

– Edge filtering: Remove provably inconsistent edges (those 

that do not participate in any solution)

– Node refinement: Split nodes to separate edge information

• Search

– As in classical CP, but may now be guided by MDD



Characterization of Propagation

Domain consistency generalizes naturally to MDDs:

• Let C(X) be a constraint on variables X and let M be an 

MDD on X

• Constraint C is MDD consistent if for each arc in M, 

there is at least one path in M that represents a 

solution to C

Equivalent to domain consistency for MDD of width 1

18



Specific MDD propagation algorithms

• Linear equalities and inequalities [Hadzic et al., 2008] 

[Hoda et al., 2010]

• Alldifferent constraints [Andersen et al., 2007]

• Element constraints [Hoda et al., 2010]

• Among constraints [Hoda et al., 2010]

• Disjunctive scheduling constraints [Hoda et al., 2010]

[Cire & v.H., 2011]

• Sequence constraints (combination of Amongs)
[v.H., 2011]

• Generic re-application of existing domain filtering 

algorithm for any constraint type [Hoda et al., 2010]

19



Constraint Representation in MDDs

• For a given constraint type we maintain specific ‘state 

information’ at each node in the MDD

• Computed from incoming arcs (both from top and 

from bottom)

• State information is basis for MDD filtering and for 

MDD refinement

20
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First example: Among constraints

� Given a set of variables X, and a set of values S, a 
lower bound l and upper bound u,

Among(X, S, l, u) :=   l ≤ ∑x∈X ( x ∈ S ) ≤ u

“among the variables in X, at least l and at most u  
take a value from the set S”

� Applications in, e.g., sequencing and scheduling

� WLOG assume here that X are binary and S = {1}
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Example MDD for Among

Exact MDD for Among({x1,x2,x3,x4},{1},2,2)

x2

x3

x4 {0}

{1} {0}

{0}{0}

{0}

{1}

{1}

{1} {1}

{1}

{0}

x1

State information:

path length from top 

and from bottom
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MDD Filtering for Among

Goal: Given an MDD and an Among constraint, remove all

inconsistent edges from the MDD

(establish MDD-consistency) [Hoda et al., CP 2010]

Approach:

• Compute path lengths from the root and from the sink to each 

node in the MDD

• Remove edges that are not on a path with                             

length between lower and upper bound

• Complete (MDD-consistent) version

– Maintain all path lengths; quadratic time

• Partial version (does not remove all inconsistent edges)

– Maintain and check bounds (longest and shortest paths); linear time
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Node refinement for Among

For each layer in MDD, we first apply edge filter, and 

then try to refine

� consider incoming edges for each node

� split the node if there exist incoming edges that are 

not equivalent (w.r.t. path length)

� in other words, need to identify equivalence classes

Example:

� We will propagate Among({x1,x2,x3,x4},{1},2,2) through 

a BDD of maximum width 3



25Among({x1,x2,x3,x4},{1},2,2)

Example

{0,1}

{0,1}

{0,1}

{0,1}
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{0}

{0,1}

{0,1}

{0,1}

{1}

Example

Among({x1,x2,x3,x4},{1},2,2)
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{0}

{0,1}

{0,1}

{1}

Example

Among({x1,x2,x3,x4},{1},2,2)

{0,1}{0,1}
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{0}

{0,1}

{1}

Example

Among({x1,x2,x3,x4},{1},2,2)

{0}{1}{0} {1}

{0,1}{0,1} {0,1}



29

Experiments

• Multiple among constraints

– 50 binary variables total

– 5 variables per among constraint, indices chosen from normal 

distribution with uniform-random mean in [1..50] and stdev 2.5, 

modulo 50 (i.e., somewhat consecutive)

– Classes: 5 to 200 among constraints (step 5), 100 instances per class

• Nurse rostering instances (horizon n days)

– Work 4-5 days per week

– Max A days every B days

– Min C days every D days

– Three problem classes

� Compare width 1 (traditional domains) with increasing widths
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width 1 vs 4 width 1 vs 16

Multiple Amongs: Backtracks
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width 1 vs 4 width 1 vs 16

Multiple Amongs: Running Time
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Nurse rostering problems

Width 1 Width 4 Width 32

Size BT CPU BT CPU BT CPU

Class 1 40 61,225 55.63 8,138 12.64 3 0.09

80 175,175 442.29 5,025 44.63 11 0.72

Class 2 40 179,743 173.45 17,923 32.59 4 0.07

80 179,743 459.01 8,747 80.62 2 0.32

Class 3 40 91,141 84.43 5,148 9.11 7 0.18

80 882,640 2,391.01 33,379 235.17 55 3.27



Sequence Constraint

Employee must work at most 7 days every 9 consecutive days

33

sun mon tue wed thu fri sat sun mon tue wed thu

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

0 ≤ x1+x2+ ... +x9 ≤ 7

0 ≤ x2+x3+ ... +x10 ≤ 7

0 ≤ x3+x4+ ... +x11 ≤ 7

0 ≤ x4+x5+ ... +x12 ≤ 7

=: Sequence([x1,x2,...,x12], q=9, S={1}, l=0, u=7)

Sequence(X, q, S, l, u) :=        ∧ l ≤ ∑x∈X’ ( x ∈ S ) ≤ u
|X’|=q

Among(X, S, l, u) 



MDD Representation for Sequence

Exact MDD for Sequence(X, q=3, S={1}, l=1, u=2) 34

• Equivalent to the DFA 
representation of 
Sequence for domain 
propagation             

[v.H. et al., 2006, 2009]

• Size O(n2q)
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MDD Filtering for Sequence

Goal: Given an arbitrary MDD and a Sequence constraint, remove 

all inconsistent edges from the MDD  (i.e., MDD-consistency)

Can this be done in polynomial time?

Theorem: Establishing MDD consistency for Sequence on an 

arbitrary MDD is NP-hard

(even if the MDD order follows the sequence of variables X)

Proof: Reduction from 3-SAT

Next goal: Develop a partial filtering algorithm, that does not 

necessarily achieve MDD consistency



Partial filter from decomposition

• Sequence(X, q, S, l, u) with X = x1, x2, …, xn

• Introduce a ‘cumulative’ variable yi representing the sum 
of the first i variables in X

y0 = 0

yi = yi-1 + (xi∈S) for i=1..n

• Then the among constraint on [xi+1,…, xi+q] is equivalent to 

l ≤ yi+q − yi

yi+q − yi≤ u for i = 0..n-q

• [Brand et al., 2007] show that bounds reasoning on this decomposition 
suffices to reach Domain consistency for Sequence (in poly-time)

36



MDD filtering from decomposition
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Sequence(X, q=3, S={1}, l=1, u=2)

Approach

• The auxiliary variables yi can be 
naturally represented at the 
nodes of the MDD – this will be 
our state information

• We can now actively filter this 
node information (not only the 
edges)



MDD filtering from decomposition
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Sequence(X, q=3, S={1}, l=1, u=2)

yi = yi-1 + xi

1 ≤ y3 − y0 ≤ 2

1 ≤ y4 − y1 ≤ 2

1 ≤ y5 − y2 ≤ 2



MDD filtering from decomposition
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Sequence(X, q=3, S={1}, l=1, u=2)

yi = yi-1 + xi

1 ≤ y3 − y0 ≤ 2

1 ≤ y4 − y1 ≤ 2

1 ≤ y5 − y2 ≤ 2



MDD filtering from decomposition
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Sequence(X, q=3, S={1}, l=1, u=2)

yi = yi-1 + xi

1 ≤ y3 − y0 ≤ 2

1 ≤ y4 − y1 ≤ 2

1 ≤ y5 − y2 ≤ 2



MDD filtering from decomposition
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Sequence(X, q=3, S={1}, l=1, u=2)

yi = yi-1 + xi

1 ≤ y3 − y0 ≤ 2

1 ≤ y4 − y1 ≤ 2

1 ≤ y5 − y2 ≤ 2



MDD filtering from decomposition
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This procedure does 
not guarantee MDD 
consistency

Sequence(X, q=3, S={1}, l=1, u=2)

yi = yi-1 + xi

1 ≤ y3 − y0 ≤ 2

1 ≤ y4 − y1 ≤ 2

1 ≤ y5 − y2 ≤ 2



Analysis of Algorithm

• Initial population of node domains (y variables)

– linear in MDD size

• Analysis of each state in layer k

– maintain list of ancestors from layer k-q

– direct implementation gives O(qW2) operations per 

state (W is maximum width)

– need only maintain min and max value over 

previous q layers: O(Wq)

• One top-down and one bottom-up pass

43
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Experimental Setup

• Decomposition-based MDD filtering algorithm

– Implemented as global constraint in IBM ILOG CPLEX CP 

Optimizer 12.3

• Evaluation

– Compare MDD filtering with Domain filtering

– Domain filter based on the same decomposition      

(achieves domain consistency for all our instances)

– Random instances and structured shift scheduling instances

• All methods apply the same fixed search strategy

– lexicographic  variable and value ordering

– find first solution or prove that none exists



45

Random instances

• Randomly generated instances

– n=20-48 variables

– domain size between 10 and 30

– 1, 2, 5, 7, or 10 Sequence constraints

– q random from [2..n/2]

– u – l random from 0 to q-1

– 360 instances

• Vary maximum width of MDD

– widths 1 up to 32
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Random instances results

Domain Filtering

M
D

D
 F

il
te

ri
n

g

Backtracks – width 1

Domain Filtering

M
D

D
 F

il
te

ri
n

g

Backtracks – width 2

Domain Filtering

M
D

D
 F

il
te

ri
n

g

Time – width 1

Domain Filtering

M
D

D
 F

il
te

ri
n

g

Time – width 2
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Random instances results (cont’d)

Domain Filtering

M
D

D
 F

il
te

ri
n

g

Backtracks – width 16

Domain Filtering

M
D

D
 F

il
te

ri
n

g

Backtracks – width 32

Domain Filtering

M
D

D
 F

il
te

ri
n

g

Time – width 16

Domain Filtering

M
D

D
 F

il
te

ri
n

g

Time – width 32
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Shift scheduling instances

• Shift scheduling problem for n=40, 50, 60, 70, 80 days 

• Shifts: day (D), evening (E), night (N), off (O)

• Problem type P-I

– work at least 22 day or evening shifts every 30 days

Sequence(X, q=30, S= {D, E}, l=22, u=30)

– have between 1 and 4 days off every 7 consecutive days

Sequence(X, q=7, S={O}, l=1, u=4)

• Problem type P-II

– Sequence(X, q=30, S={D, E}, l=23, u=30)

– Sequence(X, q=5, S={N}, l=1, u=2)
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MDD Filter versus Domain Filter



MDDs for Disjunctive Scheduling
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Constraint-Based Scheduling

• Disjunctive scheduling may be viewed as the ‘killer 

application’ for CP

– Natural modeling (activities and resources)

– Allows many side constraints (precedence relations, time 

windows, setup times, etc.)

– State of the art while being generic methodology

• However, CP has some problems when

– objective is not minimize makespan (but instead, e.g., 

weighted sum)

– setup times are present

– … 

• What can MDDs bring here?
51

Heinz & Beck [CPAIOR 2012]

compare CP and MIP



Disjunctive Scheduling

• Sequencing and scheduling of activities on a resource

• Activities

– Processing time: pi

– Release time: ri

– Deadline: di

– Start time variable: si

• Resource

– Nonpreemptive

– Process one activity at a time

Activity 1

Activity 2

Activity 3

0 1 2 3 4

52



Common Side Constraints

• Precedence relations between activities

• Sequence-dependent setup times

• Induced by objective function

– Makespan

– Sum of setup times

– Sum of completion times

– Tardiness / number of late jobs

– …

53



Inference

• Inference for disjunctive scheduling

– Precedence relations

– Time intervals that an activity can be processed

• Sophisticated techniques include:

– Edge-Finding

– Not-first / not-last rules

• Examples:   1 ≪ 3

s3 ≥ 3

54

Activity 1

Activity 2

Activity 3

0 1 2 3 4



MDDs for Disjunctive Scheduling

Our three main considerations:

• Representation

– How to represent solutions of disjunctive 

scheduling in an MDD?

• Construction

– How to construct  this relaxed MDD?

• Inference techniques

– What can we infer using the relaxed MDD?

55

Cire & v.H. [2012]



MDD Representation

• Natural representation as ‘permutation MDD’

• Every solution can be written as a 

permutation π

π1, π2 , π3, …, πn :  activity sequencing in the resource

• Schedule is implied by a sequence, e.g.:

������� 		 �������
� � ��
� 							� � 2,… , �

56



π
1

π
2

π
3

{2}

{1}

{3}

{3} {2}

Path {1} – {3} – {2} : 

0 ≤ start1  ≤ 1

6 ≤ start2  ≤ 7

3 ≤ start3  ≤ 5

57

MDD Representation

Act ri di pi

1 0 3 2

2 4 9 2

3 3 8 3



Exact MDD Compilation

Theorem: Constructing the exact MDD for a Disjunctive 

Instance is an NP-Hard problem

Nevertheless, there are interesting restrictions, e.g. (Balas [99]):

� TSP defined on a complete graph

� Given a fixed parameter k, we must satisfy

� ≪ � if   � � � 	 � for cities i, j 

Lemma:  The exact MDD for the TSP above has O(n2k) nodes



MDD Propagation

We can apply several propagation algorithms:

• Alldifferent for the permutation structure

• Earliest start time / latest end time

• Precedence relations

59



Propagation (cont’d)

u

r
{1,2}

{1,2}

v

{3}

{1}
{3}

{3}

{1}

{2}

{1,2,3,4,5}

• State information at 

each node i

– labels on all paths: Ai

– labels on some paths: Si

– earliest starting time: Ei

– latest completion time: Li

• Top down example for 

arc (u,v)

π
1

π
2

π
3

π
4

…
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Alldifferent Propagation

u

r
{1,2}

{1,2}

v

{3}

{1}
{3}

{3}

{1}

{2}

� All-paths state:  Au

� Labels belonging to all paths 

from node r to node u

� Au = {3}

� Thus eliminate {3} from (u,v)

{1,2,3,4,5}

π
1

π
2

π
3

π
4

…

61[Andersen et al., 2007]



Alldifferent Propagation

u

r
{1,2}

{1,2}

v

{3}

{1}
{3}

{3}

{1}

{2}

� Some-paths state:  Su

� Labels belonging to some

path from node r to node u

� Su = {1,2,3}

� Identification of Hall sets

� Thus eliminate {1,2,3} from 

(u,v)
{1,2,4,5}

π
1

π
2

π
3

π
4

…
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Propagate Earliest Completion Time

π
1

π
2

π
3

u

r
{1,2}

{1,2}

v

{3}

{1}
{3}

{3}

{1}

{2}

{4,5} π
4

� Earliest Completion Time:  Eu

� Minimum completion time 

of all paths from root to 

node u

� Similarly: Latest Completion 
Time

…
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Propagate Earliest Completion Time

π
1

π
2

π
3

u

r
{1,2}

{1,2}

v

{3}

{1}
{3}

{3}

{1}

{2}

{4,5} π
4� Eu = 7

� Eliminate 4 from (u,v) …

64

0

2

4

7

Act ri di pi

1 0 3 2

2 3 7 3

3 1 8 3

4 5 6 1

5 2 10 3

Act ri di pi

1 0 3 2

2 3 7 3

3 1 8 3

4 5 6 1

5 2 10 3



More MDD Inference

Theorem: Given the exact MDD M,  we can deduce all implied 

activity precedences in polynomial time in the size of M

r

v

t

i

j

� For a node v,

� ��
↓ : values in all paths from root to v

� ��
↑ : values in all paths from node v to terminal

� Precedence relation � ≪ � holds if and only if

for all nodes u in M

� Same technique applies to relaxed MDD

65



Communicate Precedence Relations

1. Provide precedence relations from MDD to CP

– update start/end time variables

– other inference techniques may utilize them

2. Filter the MDD using precedence relations from other 

(CP) techniques

66



MDD Refinement

• For refinement, we generally want to identify 

equivalence classes among nodes in a layer

• Theorem:

Let M represent a Disjunctive Instance. Deciding if two nodes 

u and v in M are equivalent is NP-hard.

• In practice, refinement can be based on

– earliest starting time

– latest earliest completion time ri+pi

– alldifferent constraint (Ai and Si states)

67



Experiments

• MDD propagation implemented in IBM ILOG CPLEX 

CP Optimizer 12.4 (CPO)

– State-of-the-art constraint based scheduling solver

– Uses a portfolio of inference techniques and LP relaxation

• Main purpose of experiments

– where can MDDs bring strength to CP

– compare stand-alone MDD versus CP

– compare CP versus CP+MDD (most practical)

68



Problem classes

• Disjunctive instances with 

– sequence-dependent setup times

– release dates and deadlines

– precedence relations

• Objectives (that are presented here)

– minimize makespan

– minimize sum of setup times

• Benchmarks

– Random instances with varying setup times

– TSP-TW instances (Dumas, Ascheuer, Gendreau)

– Sequential Ordering Problem

69



Test 1: Importance of setup times

Random instances

- 15 jobs

- lex search

- MDD width 16

- min makespan

70



Test 2: Minimize Makespan

• 229 TSPTW instances with up to 100 jobs

• Minimize makespan

• Time limit 7,200s

• Max MDD width is 16

# instances solved by CP: 211

# instances solved by pure MDD: 216

# instances solved by CP+MDD: 225

71



Minimize Makespan: Fails

72

CPO fails

M
D

D
+

C
P

O
 f

a
il

s

101 102 103 104 105 106 107 108

101

102

103

104

105

106

107

108

plot only on 

instances that 

were solved

by all methods



Minimize Makespan: Time
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CPO time (s)

M
D

D
+

C
P

O
 t

im
e

 (
s)

10-2 10-1 1 10    102 103 104  

10-2

10-1

1

10

102

103

104



Min sum of setup times: Fails

Dumas/Ascheuer

instances

- 20-60 jobs

- lex search

- MDD width: 16
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Min sum of setup times: Time
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Dumas/Ascheuer

instances

- 20-60 jobs

- lex search

- MDD width: 16
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Instances Dumas (TSPTW)

CPO CPO+MDD

Instance Cities Backtracks Time (s) Backtracks Time (s)

n40w40.004 40 480,970 50.81 18 0.06

n60w20.001 60 908,606 199.26 50 0.22

n60w20.002 60 84,074 14.13 46 0.16

n60w20.003 60 > 22,296,012 > 3600 99 0.32

n60w20.004 60 2,685,255 408.34 97 0.24

MDDs have maximum width 16minimize sum of setup times 
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Sequential Ordering Problem

• TSP with precedence constraints (no time windows)

• Instances up to 53 jobs

• Time limit 1,800s

• CPO: default search

• MDD+CPO: search guided by MDD (shortest path)

• Max MDD width 2,048
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CPO MDD+CPO

Instance Known Bounds Best Solution Time Best Solution Time

br17.10.sop 55 55 TL 55 4.64

br17.12.sop 55 55 TL 55 4.29

ESC07.sop 2125 2125 0 2125 0.07

ESC11.sop 2075 2075 TL 2075 1.25

ESC12.sop 1675 1675 TL 1675 1.48

ESC25.sop 1681 1747 TL 1681 34.89

ESC47.sop 1288 2044 TL 1776 TL

ft53.1.sop [7438,7531] 8028 TL 10376 TL

ft53.2.sop [7630,8335] 8774 TL 11498 TL

ft53.3.sop [9473,10935] 10709 TL 11133 TL * CP improved bound

ft53.4.sop 14425 14504 TL 14425 154.3

p43.1.sop 27990 28230 TL 28140 420.3

p43.2.sop [28175,28330] 28480 TL 28480 776.67 * closed by MDD

p43.3.sop [28366,28680] 28855 TL 28835 251.4 * closed by MDD

p43.4.sop 83005 nosol TL 83005 44.73

prob.42.sop 243 302 TL 256 TL

rbg048a.sop 351 351 TL 386 TL

ry48p.1.sop [15220,15805] 16940 TL 17633 TL

ry48p.2.sop [15524,16666] 18153 TL 18153 TL

ry48p.3.sop [18156,19894] 21116 TL 22382 TL

ry48p.4.sop [29967,31446] 31522 TL 31446 112.67 * closed by MDD

Sequential Ordering Problem Results
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Summary for MDD-based CP

• MDDs provide substantial advantage over traditional 

domains for constraint propagation

– Strength of MDD can be controlled by the width

– Huge reduction in the amount of backtracking and solution 

time is possible

– Particular examples: among, sequence, and disjunctive 

scheduling constraints



MDDs for Discrete Optimization
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Motivation

• Limited width MDDs provide a (discrete) 

relaxation to the solution space

• Can we exploit MDDs to obtain bounds for 

discrete optimization problems?
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Handling objective functions
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(1) x1 + x2 + x3 ≥ 1

(2) x1 + x4 + x5 ≥ 1

(3) x2 + x4 ≥ 1

r 

x1

x2

x3

x4

x5

1

Suppose we have an objective 

function of the form

min ∑i fi(xi) 

for arbitrary functions fi

In an exact MDD, the optimum 

can be found by a shortest r-s 

path computation

(edge weights are fi(xi) )

(1,0,1,1,0)s 



Approach

• Construct the relaxation MDD using a top-down

compilation method

• Find shortest path → provides bound B

• Extension to an exact method

1. Isolate all paths of length B, and verify if any of these 

paths is feasible*

2. if not feasible, set B := B + 1 and go to 1

3. otherwise, we found the optimal solution

* Feasibility can be checked using MDD-based CP

83



Case Study: Independent Set Problem

• Given graph G = (V, E) with vertex weights wi

• Find a subset of vertices S with maximum total weight 

such that no edge exists between any two vertices in S

max ∑i wi xi

s.t.  xi + xj ≤ 1 for all (i,j) in E

xi binary for all i in V
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Exact top-down compilation
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Node Merging
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Relaxation MDD: merge 

non-equivalent nodes when 

the given width is exceeded

Theorem: This procedure 

generates an exact MDD

[Bergman et al., 2012]

state information: eligible vertices



Relaxation MDD
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Relaxation MDD
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Relaxation MDD
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Relaxation MDD
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Evaluate Objective Function
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Experimental Results

• Impact of maximum width on strength of bound 

(and running time)

• Compare MDD bounds to LP bounds

– IBM ILOG CPLEX 12.4

– root node relaxation, no presolve, aggressive clique cuts, 

MIPemphasis

• Time Limit 3,600s

• DIMACS clique instances (unweighted graphs)
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Impact of width on relaxation

brock_200-2 instance 93

maximum width

upper bound

maximum width

time (s)



MDD versus LP bounds: Quality
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LP bound / opt
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MDD versus LP bounds: Time
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Restriction MDDs

• Relaxation MDDs find upper bounds for independent 

set problem

• Can we use MDDs to find lower bounds as well (i.e., 

good feasible solutions)?

• Restriction MDDs represent a subset of feasible 

solutions

– we require that every r-s path corresponds to a feasible 

solution

– but not all solutions need to be represented

• Goal: Use restriction MDDs as a heuristic to find good 

feasible solutions
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Creating Restriction MDDs

Using an exact top-down compilation method, we can 

create a limited-width restriction MDD by

1. merging nodes, or

2. deleting nodes

while ensuring that no solution is lost
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Node merging by example
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Node merging by example
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Node merging heuristics

• Random

– select two nodes {u1, u2} uniformly at random

• Objective-driven

– select two nodes {u1, u2} such that

f(u1), f(u2) ≤ f(v) for all nodes v ≠ u1, u2 in the layer

• Similarity

– select two nodes {u1, u2} that are ‘closest’

– problem dependent (or based on semantics)
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Node deletion by example
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Node deletion heuristics

• Random

– select node u uniformly at random

• Objective-driven

– select node u such that

f(u) ≤ f(v) for all nodes v ≠ u in the layer

• Information-driven

– problem specific
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Experimental Results

• Comparison to greedy heuristic

– select vertex v with smallest degree and add it to 

independent set

– remove v and its neighbors and repeat

• DIMACS instance set

• MDD version 1: maximum width 100

– time comparable to greedy heuristic (max 0.25s)

• MDD version 2: maximum width 8,000,000/n

– maximum time 13s
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Greedy versus MDD: Quality
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Summary for MDD-Optimization

• Limited-width MDDs can provide useful bounds 

for discrete optimization

– The maximum width provides a natural trade-off 

between computational efficiency and strength

– Both lower and upper bounds

– Generic discrete relaxation and restriction method 

for MIP-style problems

• So far, mainly combinatorial applications 

– Independent Set Problem, Set Covering Problem, 

Set Packing Problem
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Open issues

• Extend application to CP

– Which other global constraints are suitable? (Cumulative?)

– Can we develop search heuristics based on the MDD?

– Can we more efficiently store and manipulate approximate 

MDDs? (Implementation issues)

– Can we obtain a tighter integration with CP domains?

• MDD technology

– Variable ordering is crucial for MDDs. What can we do if the 

ordering is not clear from the problem statement?

– How should we handle constraints that partially overlap on 

the variables? Build one large MDD or have partial MDDs 

communicate?
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Open issues (cont’d)

• Formal characterization

– Can MDDs be used to identify tractable classes of CSPs?

– Can we identify classes of global constraints for which 

establishing MDD consistency is hard/easy?

– Can MDDs be used to prove approximation guarantees?

– Can we exploit a connection between MDDs and tight LP 

representations of the solution space?

• Optimization

– Approximate MDDs can provide bounds for any nonlinear 

(separable) objective function. Demonstrate the 

performance on an actual application.
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Open issues (cont’d)

• Beyond classical CP 

– How can MDDs be helpful in presence of uncertainty?      

E.g., can we use approximate MDDs to represent policy 

trees for stochastic optimization?          [Cire, Coban, v.H., 2012]

– Can we utilize approximate MDDs for SAT?

– Can MDDs help generate nogoods, e.g., in lazy clause 

generation?

– Can we exploit a tighter integration of MDDs in MIP solvers?

• Applications

– So far we have looked mostly at generic problems. Are there 

specific applications for which MDDs work particularly well? 

(Bioinformatics?)
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Summary

What can MDDs do for discrete optimization?

• Compact representation of all solutions to a problem

• Limit on size gives approximation

• Control strength of approximation by size limit

MDDs for Constraint Programming

• MDD propagation natural generalization of domain propagation

• Orders of magnitude improvement possible

MDDs for optimization (CP/ILP/MINLP)

• MDDs provide discrete relaxations

• Much stronger bounds can be obtained in much less time

Many opportunities: search, stochastic programming, integrated 

methods, theory, …
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