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- Each variable labels exactly one node 
- All variables contained in the scope of a function in the problem description   
   are neighbors in the primal graph  
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Primal graph A tree decomposition 
  1) is a tree of clusters 
  2)  preserves variables dependency 
  3) ensures running intersection  
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Tree Decomposition  

Ct2 Ct4 
Ct1 a 

l2 l3 

b h 

l2 l3 

l1 

c 

l1 l4 

l4' 

l1 g 

g 

l5 

d Ct3 

Ct5 
Ct6 

Ct7 

h 

l1 

a 
b l2 

l3 

c 

l4 

g l5 

 d  e 

l4' 

 d  e 

l1 c 

 d 

l1 l4 

e l2 l3 
g 

A tree decomposition 
  1) is a tree of clusters 
  2) preserves variables dependency 
  3) ensures running intersection  

Introduction 

Primal graph 



Vinccent Armant                            CP2012 8 

Ct2 Ct4 Ct1 a 

l2 l3 

b h 

l2 l3 

l1 

l1 c 

c 

l1 l4 

l4' 

d 

l1 l4 

e 

d 

l1 g 

e g 

l5 

d Ct3 

Ct5 
Ct6 

Ct7 

f5(l3, a, b) 

f3(l2, a, b) f1(l1, h) 

f4(l2, h) 

f7(l3, h) 

f6(l3, c) 

f10(l5, d , g) f2(l1, d , e, g) 

f9(l4, e, d) 

f8(l4, l4', c) 

 

 

 

 

 

 

 

 

 

 

Pb : 
f1(l1, h ) 

f2(l1, d , e, g) 

f3(l2, a, b) 

f4(l2, h) 

f5(l3, a, b) 

f6(l3, c) 

f7(l3, h) 

f8(l4, l4', c)   

f9(l4, e, d) 

f10(l5, d , g) 

l3 l2 
g 

1)  Good points: 
  - divides the initial problem into sub-problems  organized in  a tree structure  
  - allows concurrent resolution and /or backtrack free search 
  - bounds time and space complexity by  the size of the largest cluster ( width ) 
      e.g. allows succinct representation (OBDD, MDD, DNNF, ..)  
  
2) Limitations: 
  - finding an optimal tree-decomposition is NP-Hard 
   

 

wCmax(init pb)= O(d13)  Cmax ( T decomposed pb) = O(d4)  

Introduction Why is it useful ?  
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Initial problem setting is distributed among a set of peers 
 1) each peer can only interact with its neighbors by acquaintance links 
 2) local variables remain local 
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each « li » represents  a local variable of pi 
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The classical notion of tree decomposition is not sufficient  
 it does not respect the privacy of local variables  
 it does not preserve the peer acquaintances 

a primal graph its tree decomposition  
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How to decompose a distributed system respecting 
privacy and the peer acquaintances ? 
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Distributed system 

Distributed Tree Decomposition 

Acquaintance Graph G((P,V), ACQ) 
  1) P represents the set of  peers 
  2) V labels each peer by its set of variables 
  3) ACQ   P x P represents is acquaintance links 
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Acquaintance Graph 

Distributed Tree Decomposition 

Distributed Tree Decomposition 
 1) is a tree of clusters 
 2) preserves the variables dependencies 
 3) respects the running intersection property 
 4) preserves the peers  acquaintance 
 5) respectis the privacy of local variables 
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Distributed Tree Decomposition 
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Acquaintance Graph Distributed Tree Decomposition 
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 2) preserves the variables dependencies 
 3) respects the running intersection property 
 4) preserves the peers  acquaintance 
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-a cluster is created by one peer 
-2 neighboring clusters come from: 
   - the same peer 
   - neighboring peers 
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A local variable from pi can only 
appear in a cluster created by pi 
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Lesson learned from centralized context 

What are the good tree decomposition techniques? Why?  

Finding optimal Tree Decomposition  Finding optimal Elimination Order  
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It is always possible to build a TD from the clusters induced by Elimination order  
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Observation: The edge added between l1 and h will 
increase the size of the cluster induced l1 or h 

Remark: If we add no edges  Perfect elimination  

Heuristic: Eliminate first the variable that minimizes the 
number of additional edges : (Min Fill) 
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Pb: elimination order cannot be directly applied 
 No privacy, No notion of acquaintance links  

Lesson learned from centralized context 



Vinccent Armant                            CP2012 34 

Lesson learn from distributed context 

Concurrent eliminations can be bad for tree decomposition 

Intuition: 
        distributed settings can speed up the elimination process by concurrent eliminations  
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Outline 



 
• Distributed algorithm 

– Phase 1: Implicit  building of a DTD 
• Elimination 
• Local elections and votes 
• Token passing 

– Phase 2:  clusters reconnection (acquaintance property). 

 
• Heuristics: 

– Min-Cluster: Each peer estimates the size of the cluster 
that it will produce if it is the next to be eliminated. 
 

– Min-Proj : Each peer estimates the size of additional 
variables that it will add to the token if it is the next to be 
eliminated. 
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Token Elimination: Principle 
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On going Distributed Tree Decomposition 

Token Elimination: Min Cluster 
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 - organize a local election 
 - peers vote , p is a local minimal ? 
   .  No: sends the token    
   .  Yes: eliminates itself, creates a new cluster,  
       adds shared variables to the token,  
       reorganizes local election 
      peers vote and sends the token 

Token Elimination: Min Cluster 

p5 creates the cluster for l5 
(privacy) 

On going Distributed Tree Decomposition Distributed algorithm 
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Token Elimination: Min Cluster 
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produce  a cluster of 6 
variables 
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On going Distributed Tree Decomposition 
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On going Distributed Tree Decomposition 

Token Elimination: Min Cluster 
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On going Distributed Tree Decomposition 
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On going Distributed Tree Decomposition 
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• Preliminary: Tree Decomposition 
 

• Problematic: How to decompose a distributed 
system respecting privacy and acquaintances 

 
• Distributed Tree Decomposition 

 

• Token Elimination 
 

• Experimental results on small world graph 
 

• Conclusion et perspectives 
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Outline 



• Properties 

– low average distance between 2 
nodes 

 

– heterogeneity (degree 
distribution follows a power law ) 

 

– represents interaction graph of a 
lot of real world applications 
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Tree Decomposition of small world graphs 
 
Barabasi and Albert (B.A.) graphs 
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 width of tree decomposed BA Graphs 
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 CPU-Time of the tree decomposed BA Graphs 



• Properties 

– Short average distance between 
nodes 

 

– Homogenous (degree 
distribution follows Poisson law) 

 

– Represents some applications  

     s.t. ISCAS circuits… 
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 Watts and Strogatz (W.S.) graphs 
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 width of the tree decomposed WS Graphs 
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 CPU time of the tree decomposed de WS graph 



Conclusions  

• Distributed Tree Decomposition respecting 
– privacy (main reason for distributed systems) 
– preserving network acquaintance 

 

• Token Elimination relying 
– elimination  
– on votes, token passing 

 
• Results: Token Elimination  

– outperforms classical distributed decomposition methods    
– is competitive with centralized methods 
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Applications 

• Challenge of distributed diagnosis: 

How to explain the global behavior of a distributed ?  

 Each peer have only a local view of the system description 

 

• Challenge of DCSP: 

How to solve a distributed problem ? 

 Each agent has a strong privacy policy 
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Answer: Distributed Tree Decomposition 
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– Questions? 

 

– vincent.armant@lri.fr 
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